WWW.METODICHKA.X-PDF.RU
БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Методические указания, пособия
 


Pages:     | 1 |   ...   | 6 | 7 || 9 | 10 |   ...   | 14 |

«БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ УЧЕБНОЕ ПОСОБИЕ Под редакцией проф. С.Г. Плещица ИЗДАТЕЛЬСТВО САНКТ-ПЕТЕРБУРГСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ЭКОНОМИКИ И ФИНАНСОВ ББК 68.9 Б 35 ...»

-- [ Страница 8 ] --

6. Выполнение правил личной гигиены. Эти правила предусматривают личностные требования к работающим с источниками ионизирующих излучений: запрещение курения в рабочей зоне, тщательная очистка (дезактивация) кожаных покровов после окончания работы, проведение дозиметрического контроля загрязнения спецодежды, спецобуви и кожных покровов. Все эти меры предполагают исключение возможности проникновения радиоактивных веществ внутрь организма.

Службы радиационной безопасности. Безопасность работы с источниками ионизирующих излучений на предприятиях контролируют специальные службы - службы радиационной безопасности комплектуются из лиц, прошедших специальную подготовку в средних, высших учебных заведениях или специализированных курсах Минатома РФ.

Эти службы оснащены необходимыми приборами и оборудованием, позволяющими решать поставленные перед ними задачами. Службы выполняют все виды контроля на основании действующих методик, которые постоянно совершаются по мере выпуска новых видов приборов радиационного контроля. Важной системой профилактических мероприятий при работе с источниками ионизирующих излучений является проведение радиационного контроля.

4.5. Защитные мероприятия от электромагнитных полей и излучений (неионизирующих)

Электромагнитные поля и неионизирующие излучения подразделяются на:

6. электромагнитные поля (ЭМП) радиочастот;

7. электрические поля (ЭП) токов промышленной частоты;

8. статическое электричество;

9. лазерное излучение;

10. ультрафиолетовое излучение.

Рассмотрим их.

Электромагнитное поле (ЭМП) радиочастот характеризуется способностью нагревать материалы, распространяться в пространстве и отражаться от границы раздела двух сред, взаимодействовать с веществом. При оценке условий труда учитываются время воздействия ЭМП и характер облучения работающих.

Электромагнитные волны лишь частично поглощаются тканями биологического объекта, поэтому биологический эффект зависит от физических параметров ЭМП радиочастот: длинные волны (частоты колебаний), интенсивности и режима излучения (непрерывный, прерывистый, импульсно-модулированный), продолжительности и характера облучения организма (постоянное, интермиттирующее), а также от площади облучаемой поверхности и анатомического строения органа или ткани. Степень поглощения энергии тканями зависит от их способности к ее отражению на границах раздела, определяемой содержанием воды в тканях и другими их особенностями. При воздействии ЭМП на биологический объект происходит преобразование электромагнитной энергии внешнего поля в тепловую, что сопровождается повышением температуры тела или локальным избирательным нагревом тканей, органов, клеток, особенно с плохой терморегуляцией (хрусталик, стекловидное тело, семенники и др.).

Тепловой эффект зависит от интенсивности облучения.

Действие ЭМП радиочастот на центральную нервную систему при плотности потока энергии (ППЭ) более 1мВт/см2 свидетельствует о ее высокой чувствительности к электромагнитным излучениям.

Изменения в крови наблюдаются, как правило, при ППЭ выше 10 мВт/см2. При меньших уровнях воздействия наблюдаются фазовые изменения количества лейкоцитов, эритроцитов и гемоглобина (чаще лейкоцитоз, повышение эритроцитов и гемоглобина). При длительном воздействии ЭМП происходит физиологическая адаптация или ослабление иммунологических реакций.

Поражение глаза в виде помутнения хрусталика - катаракты - является одним из наиболее характерных специфических последствий воздействия ЭМП в условиях производства. Помимо этого следует иметь в виду и возможность неблагоприятного воздействия ЭМП-облучения на сетчатку и другие анатомические образования зрительного анализатора.

Воздействие ЭМП с уровнями, превышающими допустимые, могут приводить к изменениям функционального состояния центральной нервной и сердечно-сосудистой систем, нарушению обменных процессов и др. При воздействии значительных интенсивностей СВЧ могут возникать более или менее выраженные помутнения хрусталика глаза. Нередко отмечаются изменения в составе периферической крови. Начальные изменения в организме обратимы. При хроническом воздействии ЭМП изменения в организме могут прогрессировать и приводить к патологии.

Интенсивность электромагнитных полей радиочастот на рабочих местах персонала, проводящего работы с источниками ЭМП, и требования к проведению контроля регламентируют специальные ГОСТы.

Средства и методы защиты от ЭПМ делятся на три группы: организационные, инженерно-технические и лечебно-профилактические.

Организационные мероприятия предусматривают предотвращение попадания людей в зоны с высокой напряженностью ЭПМ, создание санитарно-защитных зон вокруг антенных сооружений различного назначения.

Общие принципы, положенные в основу инженерно-технической защиты, сводятся к следующему: электрогерметизация элементов схем, блоков, узлов установки в целом с целью снижения или устранения электромагнитного излучения; защита рабочего места от облучения или удаление его на безопасное расстояние от источника излучения. Для экранирования рабочего места используются различные типы экранов: отражающие и поглощающие.

В качестве средств индивидуальной защиты рекомендуется специальная одежда, выполненная из металлизированной ткани, и защитные очки.

Лечебно-профилактические мероприятия должны быть направлены прежде всего на раннее выявление нарушений в состоянии здоровья работающих. Для этой цели предусмотрены предварительные и периодические медицинские осмотры лиц, работающих в условиях воздействия СВЧ - 1 раз в 12 месяцев, УВЧ и ВЧ-диапазона раз в 24 месяца.

Электрические поля токов промышленной частоты. Источниками электрических полей (ЭП) промышленной частоты являются линии электропередач высокого и сверхвысокого напряжения, открытые распределительные устройства (ОРУ).

При длительном хроническом воздействии ЭП возможны субъективные расстройства в виде жалоб невротического характера (чувство тяжести и головная боль в височной и затылочной областях, ухудшение памяти, повышенная утомляемость, ощущение вялости, раздражительность, боли в области сердца, расстройства сна; угнетенное настроение, апатия, своеобразная депрессия с повышенной чувствительностью к яркому свету, резким звукам и другим раздражителям), проявляющиеся к концу рабочей смены. Расстройства в состоянии здоровья работающих, обусловленные функциональными нарушениями в деятельности нервной и сердечно-сосудистой систем астенического и астеновегетативного характера, являются одним из первых проявлений профессиональной патологии.

Допустимые уровни напряженности электрических полей установлены в специальном ГОСТе ССБТ.

Стандарт устанавливает предельно допустимые уровни напряженности электрического поля частотой 50 Гц для персонала, обслуживающего электроустановки и находящегося в зоне влияния создаваемого ими ЭП, в зависимости от времени пребывания и требований к проведению контроля уровней напряженности ЭП на рабочих местах.

Предельно допустимый уровень напряженности воздействующего ЭП равен 25 кВ/м. Пребывание в ЭП напряженностью более 25 кВ/м без средств защиты не допускается.

Допустимое время пребывания в ЭП может быть одноразово или дробно в течение рабочего дня. В остальное рабочее время напряженность ЭП не должна превышать 5 кВ/м.

Требования ГОСТа действительны при условии исключения возможности воздействия электрических разрядов на персонал, а также при условии применения защитного заземления всех изолированных от земли предметов, машин и механизмов, к которым возможно прикосновение работающих в зоне влияния ЭП.

Средства защиты от электрического поля частотой 50 Гц:

• стационарные экранизирующие устройства (козырьки, навесы, перегородки);

• переносные (передвижные) экранизирующие средства защиты (инвентарные навесы, палатки, перегородки, щиты, зонты, экраны и т. д.).

К индивидуальным средствам защиты относятся: защитный костюм - куртка и брюки, комбинезон; экранизирующий головной убор - металлическая или пластмассовая каска для теплого времени года и шапка-ушанка с прокладкой из металлизированной ткани для холодного времени года; специальная обувь, имеющая электропроводящую резиновую подошву или выполненная целиком из электропроводящей резины.

Комплекс лечебно-профилактических мероприятий для работающих аналогичен требованиям как при действии ЭПМ диапазона радиочастот.

Статическое электричество - это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых материалов или на изолированных проводниках. Постоянное электростатическое поле (ЭСП) - это поле неподвижных зарядов, осуществляющее взаимодействие между ними. Возникновение зарядов статического электричества происходит при относительном перемещении двух находящихся в контакте тел, кристаллизации, а также вследствие индукции.

ЭПС характеризуется напряженностью (Е), определяемой отношением силы, действующей в поле на точечный электрический заряд, к величине этого заряда. Единицей измерения напряженности ЭПС является вольт на метр (В/м).

Электрические поля создаются в энергетических установках и при электротехнологических процессах. В зависимости от источников образования они могут существовать в виде собственно электростатического поля (поля неподвижных зарядов) или стационарного электрического поля (электрическое поле постоянного тока).

Исследования биологических эффектов показали, что наиболее чувствительны к электростатическим полям нервная, сердечно-сосудистая, нейрогуморальная и другие системы организма.

У людей, работающих в зоне воздействия электростатического поля, встречаются разнообразные жалобы на: раздражительность, головную боль, нарушение сна, снижение аппетита и др. Характерны своеобразные «фобии», обусловленные страхом ожидаемого разряда. Склонность к «фобиям» обычно сочетается с повышенной эмоциональной возбудимостью.

Допустимые уровни напряженности электростатических полей установлены в специальном ГОСТе ССБТ.

Они зависят от времени пребывания на рабочих местах.

Предельно допустимый уровень напряженности электростатических полей (Епред) равен 60 кВ/м в 1 ч.

При напряженности электростатических полей менее 20 кВ/м время пребывания в электростатических полях не регламентируется.

Одним из распространенных средств защиты от статического электричества является уменьшение генерации электростатических зарядов или их отвод с наэлектризованного материала, что достигается:

заземлением металлических и электропроводных элементов оборудования;

увеличением поверхностной и объемной проводимости диэлектриков;

установкой нейтрализаторов статического электричества.

Заземление проводится независимо от использования других методов защиты.

Более эффективным средством защиты является увеличение влажности воздуха до 65-75%, если позволяют условия технологического процесса.

В качестве индивидуальных средств защиты могут применяться: антистатическая обувь, антистатический халат, заземляющие браслеты для защиты рук и другие средства, обеспечивающие электростатическое заземление тела человека.

Лазерное излучение - это направленный пучок электромагнитного излучения оптического диапазона, испускаемый техническим устройством - оптическим квантовым генератором (лазером). Лазер или оптический квантовый генератор - это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения.

Оптический квантовый генератор (ОКГ) состоит из рабочего пола (активная среда), лампы накачки и зеркального резонанса. Сильная световая вспышка лампы превращает электроны активной среды из спокойного в возбужденное состояние. Эти электроны, действуя друг на друга, создают лавинный поток световых фотонов.

Отражаясь от резонансных экранов, фотоны пробивают полупрозрачный зеркальный экран и выходят узким монохроматическим когерентным (строго направленным) световым пучком высокой энергии.

Лазеры получили широкое применение в научных исследованиях (физика, химия, биология и др.), в практической медицине (хирургия, офтальмология и др.), а также в технике (связи, локации, измерительная техника, география), при исследовании внутренней структуры вещества, разделении протонов, термоядерном синтезе, термообработке, сварке, резке, при изготовлении отверстий малого диаметра - микроотверстий и др. Области применения лазера определяются энергией используемого лазерного излучения.

В зависимости от характера активной среды лазеры подразделяются на твердотелые (на кристаллах или стеклах), газовые, лазеры на красителях, химические, полупроводниковые и др.

По степени опасности лазерного излучения для обслуживающего персонала лазеры подразделяются на четыре класса:

класс I (безопасные) - выходное излучение не опасно для глаз;

класс II (малоопасные) - опасно для глаз прямое или зеркально отраженное излучение;

класс III (среднеопасные) - опасно для глаз прямое, зеркально, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности и (или) для кожи прямое или зеркально отраженное излучение;

класс IV (высокоопасные) - опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.

Классификация определяет специфику воздействия излучения на орган зрения и кожу. В качестве ведущих критериев при оценке степени опасности генерируемого лазерного излучения приняты величина мощности (энергии), длина волны, длительность импульса и экспозиции облучения.

Лазеры широко используются в различных областях промышленности, науки, техники, связи, сельском хозяйстве, медицине, биологии и др.

Работа с лазерами в зависимости от конструкции, мощности и условий эксплуатации может сопровождаться воздействием на персонал неблагоприятных производственных факторов, которые разделяют на основные и сопутствующие. К основным факторам относятся прямое, зеркально и диффузно отраженное и рассеянное излучения. Степень выраженности их определяется особенностями технологического процесса. К сопутствующим относится комплекс физических и химических факторов, возникающих при работе лазеров, которые имеют гигиеническое значение и могут усиливать неблагоприятное воздействие излучения на организм, а в ряде случаев имеют самостоятельное значение. Поэтому при оценке условий труда персонала учитывают весь комплекс факторов производственной среды.

Действие лазеров на организм зависит от параметров излучения (мощности и энергии излучения на единицу облучаемой поверхности, длины волны, длительности импульса, частоты следования импульсов, времени облучения, площади облучаемой поверхности), локализации воздействия и анатомо-физиологических особенностей облучаемых объектов.

Действие лазерных излучений наряду с морфофункциональными изменениями тканей непосредственно в месте облучения вызывает разнообразные функциональные изменения в организме: в центральной нервной, сердечно-сосудистой, эндокринной системах, которые могут приводить к нарушению здоровья. Биологический эффект воздействия лазерного излучения усиливается при неоднократных воздействиях и при комбинациях с другими неблагоприятными производственными факторами.

Предельно допустимые уровни лазерного излучения регламентированы Санитарными нормами и правилами устройства и эксплуатации лазеров №5804-91, которые позволяют разрабатывать мероприятия по обеспечению безопасных условий труда при работе с лазерами. Санитарные нормы и правила позволяют определить величину ПДУ для каждого режима работы, участка оптического диапазона по специальным формулам и таблицам. Нормируется и энергетическая экспозиция облучаемых тканей.

Предупреждение поражений лазерным излучением включает систему мер инженерно-технического, планировочного, организационного, санитарно-гигиенического характера.

При использовании лазеров II-III классов для исключения облучения персонала необходимо либо ограждение лазерной зоны, либо экранирование пучка излучения.

Лазеры IV класса опасности размещают в отдельных изолированных помещениях и обеспечивают дистанционным управлением их работы.

К индивидуальным средствам защиты, обеспечивающим безопасные условия труда при работе с лазерами, относятся специальные огни, щитки, маски, снижающие облучение глаз до ПДУ.

Работающим с лазерами необходимы предварительные и периодические (1 раз В год) медицинские осмотры терапевта, невропатолога, окулиста.

Ультрафиолетовое излучение (УФ) представляет собой невидимое глазом электромагнитное излучение, занимающее в электромагнитном спектре промежуточное положение между светом и рентгеновским излучением (200-400 нм).

УФ-лучи обладают способностью выдавать фотоэлектрический эффект, проявлять фотохимическую активность (развитие фотохимических реакций), вызывать люминесценцию и обладают значительной биологической активностью.

Известно, что при длительном недостатке солнечного света возникают нарушения физиологического равновесия организма, развивается своеобразный симптомокомплекс, именуемый «световое голодание».

Наиболее часто следствием недостатка солнечного света являются авитаминоз D, ослабление защитных иммунобиологических реакций организма, обострение хронических заболеваний, функциональные расстройства нервной системы.

УФ-облучение малыми дозами оказывает благоприятное воздействие на организм.

Активизируется деятельность сердца, улучшается обмен веществ, понижается чувствительность к некоторым вредным веществам из-за усиления окислительных процессов в организме (марганец, ртуть, свинец) и более быстрого выведения их из организма, улучшается кроветворение, снижается заболеваемость простудными заболеваниями, снижается утомляемость, повышается работоспособность. УФ-излучение от производственных источников (электросварка, ртутно-кварцевые лампы) может стать причиной острых и хронических заболеваний и поражений. Наиболее уязвимым для УФ-излучений являются органы зрения (фотоофтальмия, хронический конъюнктивит, катаракта хрусталика). Может быть острое воспаление кожных покровов, иногда с отеком и образованием пузырей. Может подняться температура тела, появиться озноб, головные боли, возможен рак кожи.

Для защиты кожи от УФ-излучения используют защитную одежду, противосолнечные экраны (навесы и т.

п.), специальные покровные кремы.

Важное гигиеническое значение имеет способность УФ-излучения производственных источников изменять газовый состав атмосферного воздуха вследствие его ионизации. При этом в воздухе образуются озон и оксиды азота. Эти газы, как известно, обладают высокой токсичностью и могут представлять большую опасность, особенно при выполнении сварочных работ, сопровождающихся УФ-излучением, в ограниченных, плохо проветриваемых помещениях или в замкнутых пространствах.

С целью профилактики отравлений окислами азота и озоном соответствующие помещения должны быть оборудованы местной или общеобменной вентиляцией, а при сварочных работах в замкнутых объемах необходимо подавать свежий воздух непосредственно под щиток или шлем.

Интенсивность УФ-излучения на промышленных предприятиях установлена Санитарными нормами ультрафиолетового излучения в производственных помещениях №4557-88.

Защитная одежда из поплина и других тканей должна иметь длинные рукава и капюшон. Глаза защищают специальными очками со стеклами, содержащими оксид свинца, но даже обычные стекла не пропускают УФ-лучи с длиной волны короче 315 нм.

4.6. Методы и способы защиты от поражений электрическим током

Из всех случаев травмирования на производстве 13% приходятся на электротравмы. В чем опасность поражения электрическим током?

Принято рассматривать 4 вида действия электрического тока на организм человека: термическое, электрическое, механическое и биологическое.

Термическое действие тока проявляется в ожогах I-IV степеней отдельных участков тела, нагреве до высокой температуры кровеносных сосудов, нервов, сердца, мозга и других органов и вызывает в них серьезные функциональные расстройства.

Электрическое действие тока выражается в разложении органической жидкости, в том числе крови, что сопровождается значительными нарушениями их физико-химического состава.

Механическое (динамическое) действие тока выражается в расслоении, разрыве и других подобных повреждениях различных тканей организма, в том числе мышечной ткани, стенок кровеносных сосудов, сосудов легочной ткани и др., в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара от перегретой током тканевой жидкости и крови.

Биологическое действие тока проявляется в раздражении и возбуждении живых тканей организма, а также в нарушении внутренних биоэлектрических процессов, протекающих в нормально действующем организме и теснейшим образом связанные с его жизненными функциями.

Сопротивление организма зависит от многих причин: от состояния наружных кожных покровов, эмоционального и физиологического состояния и меняется в течение дня.

Электрический ток, проходя через тело человека, в зависимости от величины напряжения, тока, пути следования (рука-рука, рука-нога, нога-нога и т. д.), времени воздействия может привести различные по своей тяжести последствия: от легкого покалывания до летального исхода - смерти. Указанное многообразие действий электрического тока на организм человека условно сводят к двум видам электротравм:

o местные электротравмы, когда возникает местное, частичное поражение организма;

o электрический удар, когда поражается весь организм из-за нарушения нормальной жизнедеятельности жизненно важных органов и систем.

Учитывая серьезность и опасность электротравм для организма человека, надо хорошо знать и всегда помнить, как защищать себя от поражения электрическим током.

Для справки: по степени распространения тока (электронов) в веществе все элементы на земле подразделяются на проводники, полупроводники и изоляторы.

К проводникам относятся все металлы, водные растворы щелочей, кислот, солей, саму воду, грунт земной коры (из-за наличия воды), живые организмы.

К полупроводникам - вещества, которые изменяют свою проводимость (сопротивление прохождения электронов) в зависимости от внешнего воздействия, их, как правило, используют в радиоэлектронике. К ним относятся некоторые металлы и неметаллы.

К изоляторам относятся вещества, вообще не проводящие электрический ток: стекло, сухое дерево, сухие ткани, резина, пластмассы и т. д.

Тело человека и живых организмов из-за наличия в клетках до 90% воды представляет собой проводник, сопротивление которого изменяется в широких пределах и колеблется от 3 кОм до 300 кОм.

Как правило, поражение электрическим током происходит при нарушении или невыполнении правил техники безопасности, инструкции по эксплуатации или личной неосторожности.

Какова система защиты?

Во-первых, для обеспечения электробезопасности работников предприятий все производственные помещения и электропотребители (электроинструмент, светильники, э/приборы, бытовая э/техника) классифицируются на классы защиты.

Помещения согласно ПУЭ (Правила устройства электроустановок) разделяют на:

1. Помещения без повышенной опасности. Характеризуются отсутствием условий, создающих повышенную или особую опасность.

2. Помещения с повышенной опасностью. Характеризуются следующими условиями:

a) сырость или токопроводящая пыль,

b) токопроводящие полы (металлические, земляные, железобетонные, кирпичные и т. д.),

c) высокая температура +350С и более,

d) возможность одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий (технологическим аппаратам, механизмам и т. п. с одной стороны и металлическим корпусам электрооборудования с другой).

4. Особо опасные помещения. Характеризуются наличием:

a) особой сырости (относительная влажность воздуха 100% - пол, потолок покрыты влагой),

b) химически активной или органической среды,

c) одновременно 2-х и более условий повышенной опасности (см. п.2) Переносные электроинструменты и осветительные приборы, разъединительные трансформаторы и ручные электрические машины разделяются на три класса, в зависимости от конструкции, степени защиты устройств, изоляции обмоток и питания проводов.

В зависимости от условий, в которых предстоит работать с электроинструментом, необходимо строго выполнять следующие правила и рекомендации: ПОТРМ-016-2001 (Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок) РД153-34.0-03.150.

1. В помещениях без повышенной опасности, в помещениях с повышенной опасностью - класс инструмента I применяется при наличии диэлектрических перчаток, галош или коврика или наличии устройства УЗО (устройство защитного отключения). Класс II и III не требуют дополнительных средств защиты.

2. В особо опасных помещениях электроинструмент I класса к работе не допускается, с электроинструментом класса II и III можно работать без защитных средств. Вне помещений (наружные работы): класс I - к работе не допускается, класс II и III - можно работать без защитных средств.

3. При наличии особо неблагоприятных условий (в сосудах, аппаратах и других металлических емкостях с ограниченной возможностью перемещения и выхода): класс II - с применением хотя бы одного из электрозащитных средств (диэлектрических перчаток, ковров, подставок, галош). Без применения электрозащитных средств, если при этом только один электроприемник получает питание от разделительного трансформатора, автономной двигатель-генераторной установки, преобразования частоты с разделительными обмотками или через устройство защитного отключения (УЗО).

Класс III - без применения электрозащитных средств.

Учитывая сказанное, перед работой с электроинструментом Вы обязаны поинтересоваться, какого класса Вам выдают электроинструмент, и в каких условиях предстоит работать. А покупая в магазине любой электроинструмент, поинтересуйтесь, какого класса выбранный Вами электроприбор.

III класс самый безопасный (корпус полностью изготовлен из изоляционных материалов). Особо отметим, что к работе с переносными и ручными электрическими машинами класса I в помещениях с повышенной опасностью должен допускаться персонал, имеющий группу по электробезопасности II (гл. 10 п. 2 Межотраслевые правила по охране труда при эксплуатации электроустановок).

Подробно правила пользования электроинструментом и переносными светильниками отражены в местных инструкциях на рабочих местах и в Межотраслевых правилах по охране труда при эксплуатации электроустановок гл. 10 п. 5,6,8,9.

Основным принципом, который заложен в методах защиты организма человека от поражения электрическим током, является изоляция его от источника энергии. Из курса физики Вы помните, что цепь характеризуется тремя основными величинами: U - напряжением, I - током и R - сопротивлением. При прикосновении человека к оголенному проводу или неисправному э/оборудованию, находящемуся под напряжением, возникает э/цепь провод-человек-земля или провод-человек-провод. Тело человека, с точки зрения электротехники, представляет собой сопротивление. Тяжесть поражения электрическим током будет зависеть от величины тока, протекающего через организм. Величина тока будет зависеть от 2-х величин: приложенного напряжения U и сопротивления R.

По закону Ома I=U/R, чем больше будет R (сопротивление) при неизменном U (напряжении), тем меньше будет I (ток), протекающий по цепи, в данном случае по телу человека. Таким образом, увеличивая сопротивление человека относительно земли, мы предотвращаем поражение человека электрическим током.

Для справки: величина смертельного тока, проходящего через организм человека, равна 100 мА (миллиампер) или 0,1 А. Для сравнения: ток, потребляемый 1-й лампочкой накаливания в 60 Вт, равен 300 мА (0,3 А).

Безопасным напряжением для жизни человека считается 42-50 В переменного тока и 110 В постоянного.

В быту и для освещения служебных помещений и э/приборов мы пользуемся однофазным переменным напряжением 220 В.

На производстве для работы станков, подъемных кранов и наружного освещения используется, как правило, переменное 3-х фазное напряжение 380/220 В.

Трансформаторные подстанции используют напряжение 6-10 кВ, которое понижается до рабочей величины 380/220 В.

По проводам линии электропередачи, проходящей вдоль ж/д и территории порта, передается напряжение в 110000 В.

Трамвай, троллейбус, метрополитен используют постоянное напряжение 550-600 В.

Таким образом, увеличивая сопротивление человека относительно земли в сотни, тысячи, миллионы Ом, мы можем защищать себя от поражения электрическим током даже при напряжении в сотни тысяч вольт.

Человек может работать голыми руками на линиях ЭП, находящихся под напряжением даже 100000 В.

Это можно наблюдать при ремонте контактных проводов трамваев, троллейбусов и т. д.

Ремонтники со специальных вышек смело берутся за провод, находящийся под напряжением. Но надо подчеркнуть, что голыми руками они берутся только за один провод, т.к. в случае одновременного прикосновения к 2 проводам, имеющим разный потенциал, без защитных средств поражения током не избежать.

Подобные электротравмы можно получить при использовании ветхих э/проводов с оголенными участками из-за разрушения изоляции, разбитой розетки или вилки, в этом случае полная изоляция человека от земли значения не имеет, т.к. путь тока протекает или по верхней части туловища от руки к руке, или по ограниченному участку тела. Двухфазное прикосновение, как правило, более опасно, поскольку к телу человека прикладывается наибольшее в данной цепи напряжение - линейное, а ток имеет наибольшее значение. Правилами устройства электроустановок (ПУЗ) 1.1.32 для защиты обслуживающего персонала и посторонних лиц от поражения электрическим током предусматриваются следующие мероприятия:

1. применение надлежащей изоляции, а в отдельных случаях - повышенной;

2. применение двойной изоляции;

3. применение блокировки аппаратов и ограждающих устройств для предотвращения ошибочных операций и доступа к токоведущим частям;

4. соблюдение соответствующих расстояний до токоведущих частей;

5. надежное и быстродействующее автоматическое отключение частей электрооборудования, случайно оказавшихся под напряжением, и поврежденных участков сети, в том числе сети защитного отключения;

6. заземление или зануление корпусов электрооборудования и элементов электроустановок, которые могут оказаться под напряжением вследствие повреждения изоляции;

7. выравнивание потенциалов;

8. применение разделительных трансформаторов;

9. применение напряжений 42-50 В и ниже переменного тока частотой 50 Гц и 110 В и ниже постоянного тока;

10. применение устройств, снижающих напряженность электрических полей;

11. применение предупредительной сигнализации надписей и плакатов;

12. использование средств защиты и приспособлений, в том числе для защиты от воздействия электрического поля в электроустановках, в которых его напряженность превышает допустимые нормы.

Но оказывается, можно получить элекротравму, даже не прикасаясь к оголенным проводам, электроустановка и опорам. Это может произойти при различных повреждениях э/установок, обрывах проводов и приближении к высоковольтным проводам, при пробое воздушного промежутка на высоковольтных опорах. Напряжение, которое возникает на поверхности земли в случае обрыва высоковольтного провода и падения его на землю, называется шаговым. Его название объясняется следующим образом. Человек, оказавшийся в зоне обрыва провода, попадает под влияние электромагнитной энергии, которая распространяется от точки касания провода в виде концентрических окружностей разного радиуса.

В разных точках этих окружностей предметы, находящиеся на поверхности земли, приобретают разный потенциал (энергию). Разность потенциалов между двумя точками и есть шаговое напряжение. Шаговое напряжение рассматривают как напряжение, возникающее между ступнями человека, попавшего в зону падения провода, оно зависит от ширины шага человека и величины напряжения на оборванном проводе.

Рассмотрим рисунок 1. Точка в центре концентрических окружностей - это точка касания земли оборванным проводом.

Концентрические окружности - условное обозначение распространения э/магнитного поля оборванного провода, 1 (фи 1) и 2(фи 2) - потенциал, т. е. величина энергии, которой обладают точки 1 и 2 на поверхности земли.

Таким образом, если 1=2, то 1-2=0 разность потенциалов будет равна 0, короче, напряжение будет отсутствовать.

В «Правилах устройства электроустановок» (ПУЭ п.1.1.32) указывается, что одним из способов защиты от поражения током, является выравнивание потенциалов 1-2=0, в данном примере и есть это выравнивание.

Зная эту особенность электромагнитной энергии, мы сможем защититься и выйти из опасной зоны. Для этого необходимо осторожно сдвинуть ступни друг к другу и шаркающей походкой (ступня к ступне) выйти от места попадания провода на расстояние не менее 8 метров.

8 метров - это расстояние, где шаговое напряжение падает до безопасной для жизни человека величины.

Приближение к оборванному проводу поврежденной э/установки ближе 8 метров запрещаются! Такое место, по возможности, необходимо оградить и вызвать аварийную службу Ленэнерго, а если это произошло на территории порта, дежурного электромонтера по телефону 752 или через диспетчера порта по телефону 539.

С особой осторожностью необходимо обращаться со старыми электроприборами, т. к. со временем сопротивление изоляции токоведущих частей ухудшается, крошится и высыхает резиновая изоляция.

Современные электроприборы, как правило, выпускаются с защитным нулевым проводом (на вилке это металлическая пластинка, которая при включении в розетку создает контакт с защитным нулевым проводом сети).

Защитный провод соединяется с металлическим корпусом электроприбора и, в случае попадания напряжения из-за повреждения изоляции, на корпусе происходит короткое замыкание, которое выключает автомат или вызывает перегорание предохранителей на вводном щитке помещения. Но большинство квартир, в которых мы живем, не имеют розеток с защитным нулевым проводом, поэтому, пользуясь электроприборами (электрочайниками, э/печками, э/плитками, кипятильниками), всегда помните, что корпус внешне исправно работающего чайника, холодильника, э/плитки, э/печки, может оказаться под напряжением в любой момент. Если Вы вдруг одновременно прикоснетесь к корпусу электроприбора и батарее или трубе газопровода или водопровода, Вы можете попасть под напряжение (в случае пробоя изоляции на металлический корпус э/прибора).

Попасть под напряжение Вы можете и при замене обычной электролампочки в своей квартире и вот почему. По правилам строительных норм, Государственных стандартов и технических условий при монтаже любой однофазной электропроводки выключателями всегда должен отключаться фазный провод - провод, по которому как бы приходит электроэнергия. По второму проводу, называемому нулевым проводом после выполнения работы э/энергия возвращается обратно к источнику энергии. Нулевой провод «0» имеет потенциал земли, безопасный для жизни человека. Фазный провод – как раз на оборот. В случае если недобросовестные электромонтажники-строители не выполнили этого условия, т. е. выключателем рвется нулевой провод, отключения лампочки с помощью выключателя недостаточно. Вы приводите выключатель в положение «выключено» и смело выкручиваете лампочку, в этот момент стеклянный баллон лопается, и Вы касаетесь, нити какала. Если Вы при этом находились в ванной комнате на кафельном полу или на даче, на земляном или бетонном полу, то считайте, Вам повезло, если Вы смогли отдернуть руку.

Проверить, правильно ли смонтированы у Вас выключатели, можно с помощью простого указателя напряжения, который продается в магазинах. При прикосновении указателя напряжения к фазному проводу неоновая лампочка на указателе напряжения светится. Все работы у себя дома, на даче, связанные с ремонтом и осмотром э/проводки, делайте при полностью обесточенных проводах путем отключения их на вводном щитке. Никогда не трогайте, не подвергайте внешнему нагреву, давлению, перегибам и ударам провода, находящиеся под напряжением. Неправильная эксплуатация электроприборов часто приводит не только к э/травмам, но и к пожарам.

Причинами пожаров, возникающих от неправильной эксплуатации электроприборов, является температурный фактор, который возникает при:

a) коротком замыкании;

b) плохом контакте в проводах на соединении или элементах электропроводки;

c) несоответствии сечения проводов, вилок, розеток подключаемого э/потребителя (мощность потребителя намного превышает необходимое сечение провода для его подключения). Поэтому, обнаружив сильный нагрев вилок, розеток, проводов, немедленно отключите их от сети и вызовите дежурного электромонтера.

Если подобное явление Вы обнаружили дома ила на даче, то, во-первых, проверьте соответствие Вашего потребителя элементам сети, к которой Вы его подключаете, во-вторых, обесточьте проводку и проверьте крепление проводов в вилке и розетке, если это не помогло, то, скорее всего, сечение проводов не соответствует мощности потребителя. Пользоваться такими приборами без замены проводки крайне опасно и категорически запрещается.

В случае возникновения пожара, вызванного неисправностью э/проводки, помните, что тушить водой или углекислотным пенным огнетушителем можно только при обесточенной проводке, т. к. вода и углекислотный раствор огнетушителя хорошо проводят э/ток.

4.7. Защита населения от АХОВ

Защита населения от АХОВ организуется заблаговременно. Создается система и устанавливается порядок оповещения о чрезвычайных ситуациях, возникших на объектах. Накапливаются средства индивидуальной защиты, определяется порядок их использования.

Способы защиты:

1. Укрытие людей в убежищах с применением режима полной изоляции (без забора наружного воздуха, с регенерацией внутреннего воздуха и созданием подпора за счет сжатого воздуха), а также в жилых и производственных зданиях, обеспечивающих герметизацию.

2. Использование средств индивидуальной защиты. Защитой от АХОВ служат фильтрующие промышленные и гражданские противогазы, противогазовые респираторы, изолирующие противогазы и убежища ГО.

Промышленные противогазы надежно предохраняют органы дыхания, глаза и лицо от поражения. Однако, их используют только там, где в воздухе содержится не менее 18% кислорода, а суммарная объемная доля парои газообразных вредных примесей не превышает 0,5%.

Недопустимо применять промышленные противогазы для защиты от низкокипящих, плохо сорбирующихся органических веществ (метан, этилен, ацетилен).

Если состав газов и паров неизвестен или их концентрация выше максимально допустимой, применяются только изолирующие противогазы (ИП-4, ИП-5).

Коробки промышленных противогазов строго специализированы по назначению (по составу поглотителей) и отличаются окраской и маркировкой. Некоторые из них изготавливаются с аэрозольными фильтрами, другие - без них. Белая вертикальная полоса на коробке означает, что она оснащена фильтром.

Гражданские противогазы ГП-5, ГП-7, детские ПДФ-2Д(Д), ПДФ-2Ш(Ш) и ПДФ-7 надежно защищают от таких АХОВ, как хлор, сероводород, сернистый газ, соляная кислота, тетраэтилсвинец, этилмеркаптан, нитробензол, фенол, фурфурол.

Для расширения возможностей гражданских противогазов по защите от АХОВ к ним разработан дополнительный патрон ДПГ-3. В комплекте с ДПГ-3 вышеуказанные противогазы обеспечивают надежную защиту от аммиака, диметиламина, хлора, сероводорода, соляной кислоты, тетраэтилсвинца, этилмеркаптана, нитробензола, фенола, фурфурола.

Для защиты от АХОВ в очаге аварии используются в основном средства индивидуальной защиты кожи (СИЗК) изолирующего типа. К ним относят костюм изолирующий химический (КИХ-4, КИХ-5).

В случае аварии с выбросом АХОВ убежища ГО обеспечивают надежную защиту.

Если же человек все-таки пострадал в результате аварии на ХОО, следует оказать ему первую помощь: пострадавшего необходимо удалить из зоны воздействия газа. Следует закрыть рот и нос влажным полотенцем, глаза и кожа тоже должны быть защищены. При раздражении глаз и кожи, промыть их водопроводной водой, пока боль не прекратится.

3. Эвакуация (временное отселение) населения из зоны химического загрязнения с целью исключения или уменьшения степени его поражения путем самостоятельного выхода людей в указанные места или организованного их вывоза в заблаговременно определенные районы.

При распространении газов, которые тяжелее воздуха и стелются по земле, таких как хлор и сероводород, можно спасаться на верхних этажах зданий, плотно закрыв все щели в дверях, окнах, задраив вентиляционные отверстия.

Выходить из зоны загрязнения нужно в одну из сторон, перпендикулярную направлению ветра, ориентируясь на показания флюгера, развевание флага и т.д.

В речевой информации об аварийной ситуации должно быть указано, куда и по каким улицам, дорогам целесообразно выходить (выезжать), чтобы не попасть под загрязненное облако. В таких случаях нужно использовать любой транспорт: автобусы, грузовые и легковые автомашины.

Основным способом защиты от АХОВ необходимо считать своевременное оповещение об угрозе загрязнения и вывод населения в безопасную зону.

Действия при угрозе поражения АХОВ:

1. Перейти в отведенное помещение, загерметизировать его (окна, двери, проемы). Следует помнить:

- хлор тяжелее воздуха – нельзя укрываться в подвалах, нижних этажах зданий;

- аммиак легче воздуха – целесообразно укрываться в подвалах, нижних этажах зданий;

2. Приготовить:

- 5% раствор питьевой соды (50 г на 1 л воды) при угрозе поражения хлором;

- 2% раствор лимонной кислоты или уксусной эссенции (20 г на 1 л воды) при угрозе поражения аммиаком.

3. Смочить в растворе и слегка отжать ватно-марлевую повязку или несколько слоев любой ткани и закрыть органы дыхания.

Аварии и катастрофы на радиационно опасных объектах (РОО) могут возникнуть в результате нарушения технологии производства, правил эксплуатации различных установок, агрегатов, машин и оборудования, нарушение трудовой и производственной дисциплины, а также в результате стихийного бедствия, в районе которого оказался РОО.

Известно, что главным и опасным источником ионизирующего излучения и радиоактивного загрязнения являются ядреные реакторы АЭС в случае возникновения каких-либо неисправностей или аварий и катастроф на них. В настоящее время в мире имеется 450 энергоблоков, на которых вырабатывается ежегодно 350 000 МВт, т.е. примерно 17% всей электроэнергии.

Только на территории России имеется 9 АЭС и эксплуатируется 28 энергоблоков на этих станциях: Балаковская, Калининская, Кольская, Нововоронежская, Курская, Ленинградская, смоленская, Белоярская, Билибинская. За последние десять лет на этих АЭС по различным причинам произошло несколько остановок работы энергоблоков.

Несмотря на принимаемые технические и организационные меры к безаварийной деятельности АЭС, полностью избежать аварий и радиационных выбросов на атомных электростанциях пока не удается. Об этом свидетельствует печальная статистика эксплуатации АЭС в различных странах. В целом история атомной энергетики насчитывает около 300 радиационных аварий различной степени, но лишь несколько из них являлись крупными: Англия – 1957 г.

, США – 1959, 1961, 1979 гг.(Три-Майл-Айленд), ФРГ – 1986 г. Наиболее опасной оказалась катастрофа на Чернобыльской АЭС, произошедшая 26 апреля 1986 года, в результате которой выброс радиации повлек за собой большое число жертв. Причем по выбросу только одной из радиоактивных составляющих – цезию-137 – чернобыльская катастрофа равняется тремстам Хиросимам.

Однако, в течение последующих десятилетий реального альтернативного источника энергии, который мог бы заменить нефть, газ и уголь и при этом был бы лишен недостатков атомной энергетики, не найдено. Кроме того, современные исследования показывают, что опасность «мирного атома» серьезно преувеличена. Так, например, по данным ООН, атомная энергетика является причиной смерти в 500 раз реже, чем автомобили, она в 1000 раз менее опасна, чем спиртное, и в 1500 раз реже приводит к летальному исходу, чем курение. По своей угрозе для жизни человека атомная энергия сравнима лишь с пожарами, катанием на лыжах и... прививками.

В результате аварий или катастроф на АЭС могут возникнуть массовые радиационные поражения людей и животных и огромные территории оказываются подвергнутыми радиоактивному загрязнению, что потребует осуществления массовых эвакуационных мероприятий, проведения крупномасштабных дезактивационных работ и строгого соблюдения правил радиационной безопасности.

Кроме того, нельзя не учитывать также возможность появления серьезных ситуаций, связанных с опасностью возникновения военных конфликтов, в ходе которых может быть применено ядерное оружие, одним из поражающих факторов которого является радиоактивное загрязнение местн6ости и проникающая радиация.

Учитывая сказанное, рассмотрим некоторые особенности радиоактивного загрязнения местности при авариях на АЭС и в результате взрыва ядерного боеприпаса.

4.8. Особенности радиоактивного загрязнения местности при аварии на АЭС и взрыве ядерного боеприпаса Накопленный опыт эксплуатации атомных электростанций свидетельствует, что вследствие чрезвычайных обстоятельств аварии на АЭС могут быть 2-х типов: 1) без разрушения реактора; 2) с разрушением реактора.

При аварии без разрушения реактора имеет место выброс парогазовой радиоактивной смеси в атмосферу. Продолжительность выброса в пределах 20 минут. Радиоактивное облако формируется на высоте до 200 метров, длиной и шириной до нескольких километров и перемещается по ветру, загрязняя атмосферу и местность.

При аварии с разрушением ядерного реактора происходит выброс в атмосферу парогазовой смеси с большим количеством различных радионуклидов на высоту 2-3 км и разбрасыванием на местности твердых осколков радиоактивных материалов. Причем после 1-го выброса может происходить несколько последующих выбросов с высокоактивными мелкодисперсными РВ в течение нескольких суток. В случае возникновения пожара, при высокой температуре (до 10000С на ЧАЭС) происходит непрерывное испарение РВ и поступление их в атмосферу. В изотопном составе выброса много долгоживущих радионуклидов (цезий-137, стронций-90), определяющих длительный характер загрязнения местности. Это создает высокие уровни радиации вокруг АЭС и перенос РВ на большие расстояния. Заражению подвергаются площади, измеряемые тысячами кв. км.

Так, при катастрофе на ЧАЭС уровни радиации были:

на местах выброса урана (у стен реактора) – 2000 р/ч;

на расстоянии 100 м – 600-700 р/ч;

на удалении 5-10 км – 0,5-1 р/ч.

В результате этой катастрофы оказались загрязненными РВ 11 областей России, в т.ч. и Лен.область, на Украине – 6 областей, в Белоруссии – 5 областей. Краснодарский край, Закавказье, Казахстан и даже Дальний Восток.

В Лен.области оказались загрязнены район: Кенгисепский, Ломоносовский, Волосовский, Гатчинский, Лужский. В Лен.области выявилась площадь с повышенным содержанием цезия в почве на протяжении 12 тыс.км2.

Как при 1-м, так и при 2-м виде аварии происходит радиоактивное загрязнение (РАЗ) местности и образуются зоны РАЗ и очаги радиоактивного поражения.

Зона загрязнения – это участок или район местности, в пределах которого в результате аварии на АЭС произошло загрязнение местности радиоактивными веществами.

Под очагом поражения следует понимать участок местности или район, в пределах которого в результате аварии на АЭС произошло поражение людей, сельскохозяйственных животных и растений.

В случае аварии без разрушения ядерного реактора плотность и площадь загрязнения местности значительно меньше, чем при разрушении реактора.

Загрязнение местности РВ при аварии на АЭС без разрушения ядерного реактора характеризуется двумя зонами (А и А1), см. таблицу «Зоны радиоактивного загрязнения».

Зона А1 – зона слабого радиоактивного загрязнения (РАЗ), характеризуется уровнем радиации на внешней границу зоны через 1 час после аварии Р1 час = 0, 025 р/ч и дозой до полного распада Д = 10 рад.

Зона А – зона умеренного РАЗ, характеризуется уровнем радиации на внешней границе зоны через 1 час после аварии Р1 час = 0, 01 р/ч и дозой до полного распада Д = 40 рад.

При аварии с разрушением реактора РАЗ местности характеризуется 5-ю зонами:



Pages:     | 1 |   ...   | 6 | 7 || 9 | 10 |   ...   | 14 |

Похожие работы:

«Королёв А.Ю., Королёва А.А., Яковлев А.Д.ВООРУЖЕНИЯ, ТЕХНИКИ И ОБЪЕКТОВ МАСКИРОВКА Санкт-Петербург МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО А.Ю.Королёв, А.А.Королёва, А.Д.Яковлев МАСКИРОВКА ВООРУЖЕНИЯ, ТЕХНИКИ И ОБЪЕКТОВ Учебное пособие Санкт-Петербург Королёв Александр Юрьевич, Королёва Анна Адольфовна, Яковлев Андрей Дмитриевич. Маскировка вооружения, техники и объектов. – СПб: Университет ИТМО, 2015. – 155 с. В учебном пособии изложены инженерные приёмы...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт химии Кафедра органической и экологической химии Морозова Н.В. ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ Учебно-методический комплекс. Рабочая программа для студентов очной формы обучения по направлению 04.03.01 «Химия», программа академического бакалавриата, профили подготовки: «Неорганическая химия и химия...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ _ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Анализ риска опасных производственных объектов Методические указания к практическим занятиям по курсу «Управление техносферной безопасностью» ПЕНЗА 2014 УДК 65.012.8:338.45(075.9) ББК68.9:65.30я75 Б Приведена теория, методика и примеры анализа и расчета величины риска аварии для опасного производственного объекта. Рассмотрены вопросы теории и практики построения дерева событий для аварии на опасном производственном...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт химии Кафедра органической и экологической химии Шигабаева Гульнара Нурчаллаевна ОСНОВЫ ПРОМЫШЛЕННОЙ ЭКОЛОГИИ Учебно-методический комплекс. Рабочая программа для студентов очной формы обучения по направлению 04.03.01. «Химия» программа прикладного бакалавриата, профиль подготовки: «Химия...»

«Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий (МЧС России) Федеральное государственное бюджетное учреждение Всероссийский ордена «Знак почета» научно-исследовательский институт противопожарной обороны (ФГБУ ВНИИПО МЧС России) МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ОРГАНОВ ГОСУДАРСТВЕННОЙ ВЛАСТИ СУБЪЕКТОВ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО ОБУЧЕНИЮ НАСЕЛЕНИЯ МЕРАМ ПОЖАРНОЙ БЕЗОПАСНОСТИ Москва УДК 614.841.315.004. Методические...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт математики и компьютерных наук Кафедра информационной безопасности Паюсова Татьяна Игоревна СОВРЕМЕННЫЕ ИНФОРМАЦИОННЫЕ СИСТЕМЫ Учебно-методический комплекс. Рабочая программа для студентов специальности 10.05.01 Компьютерная безопасность, специализация «Безопасность распределенных...»

«РАЗРАБОТАНА УТВЕРЖДЕНА Ученым советом факультета кафедрой информационных математики и информационных технологий и безопасности технологий 20.01.2015, протокол №7 26.02.2015, протокол № 7 ПРОГРАММА ВСТУПИТЕЛЬНОГО ИСПЫТАНИЯ для поступающих на обучение по программам подготовки научнопедагогических кадров в аспирантуре в 2015 году Направление подготовки 27.06.01 Управление в технических системах Профиль подготовки Управление в социальных и экономических системах Астрахань – 2015 г. ПОЯСНИТЕЛЬНАЯ...»

«Программа обучения (повышения квалификации) должностных лиц и специалистов органов управления ГО и РСЧС в учебнометодическом центре по гражданской обороне и чрезвычайным ситуациям казенного учреждения Воронежской области «Гражданская оборона, защита населения и пожарная безопасность Воронежской области»1. Пояснительная записка Программа обучения (повышения квалификации) должностных лиц и специалистов органов управления ГО и РСЧС в учебно-методическом центре по гражданской обороне и чрезвычайным...»

«ЛИСТ СОГЛАСОВАНИЯ от 06.06.2015 Рег. номер: 1200-1 (22.05.2015) Дисциплина: Компьютерная безопасность 38.05.01 Экономическая безопасность/5 лет ОДО; 38.05.01 Учебный план: Экономическая безопасность/5 лет ОЗО Вид УМК: Электронное издание Инициатор: Ниссенбаум Ольга Владимировна Автор: Ниссенбаум Ольга Владимировна Кафедра: Кафедра информационной безопасности УМК: Финансово-экономический институт Дата заседания 15.04.2015 УМК: Протокол заседания УМК: Согласующи ФИО Дата Дата Результат Комментари...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ Государственное образовательное учреждение высшего профессионального образования «Уральский государственный университет им. А.М. Горького» ИОНЦ «Толерантность, права человека и предотвращение конфликтов, социальная интеграция людей с ограниченными возможностями» Факультет международных отношений Кафедра европейских исследований Учебно-методический комплекс дисциплины «Проблемы региональной безопасности ЕС» А. Г. НЕСТЕРОВ ЕВРОПЕЙСКАЯ БЕЗОПАСНОСТЬ: ВЫЗОВЫ И...»

«Выполнение научно-исследовательских работ по проекту проводилось в рамках Федеральной целевой программы «Повышение безопасности дорожного движения в 2013 – 2020 годах». Цель проекта: разработка комплексного проекта профилактики детского дорожнотранспортного травматизма на период 2013 – 2020 гг. Задачи проекта: повышение уровня и эффективности мер по предупреждению детского дорожно-транспортного травматизма В процессе реализации проекта были выполнены следующие виды работ: 1. Проведен анализ...»

«Министерство Российской Федерации по делам гражданской обороны, чрезвычайным ситуациям и ликвидации последствий стихийных бедствий Утверждены Протоколом Правительственной комиссии по предупреждению и ликвидации чрезвычайных ситуаций и обеспечению пожарной безопасности Протокол N 4 от « 17» апреля 2015 года МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ по организации действий органов государственной власти и органов местного самоуправления при ликвидации чрезвычайных ситуаций 2015 год Методические рекомендации...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт химии Кафедра органической и экологической химии Шигабаева Гульнара Нурчаллаевна ВЫСОКОМОЛЕКУЛЯРНЫЕ СОЕДИНЕНИЯ Учебно-методический комплекс. Рабочая программа для студентов очной формы обучения по направлению 04.03.01. «Химия» программа прикладного бакалавриата, профили подготовки:...»

«ЛИСТ СОГЛАСОВАНИЯ от 18.06.2015 Рег. номер: 3009-1 (17.06.2015) Дисциплина: Безопасность жизнедеятельности Учебный план: 09.03.02 Информационные системы и технологии/4 года ОДО Вид УМК: Электронное издание Инициатор: Бакиева Наиля Загитовна Автор: Бакиева Наиля Загитовна Кафедра: Кафедра медико-биологических дисциплин и безопасности жизнедеяте УМК: Институт математики и компьютерных наук Дата заседания 30.04.2015 УМК: Протокол №7 заседания УМК: Дата Дата Результат Согласующие ФИО Комментарии...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт химии Кафедра органической и экологической химии Шигабаева Гульнара Нурчаллаевна ОСНОВЫ ПРОМЫШЛЕННОЙ ЭКОЛОГИИ Учебно-методический комплекс. Рабочая программа для студентов очной формы обучения по направлению 04.03.01. «Химия», программа академического бакалавриата, профиль подготовки: «Химия...»

«Библиотечка частного охранника социальных объектов СМЕРТЬ-ТРАВА (наркотики в образовательных организациях) Пособие для специалистов охраны образовательных организаций Саморегулируемая организация Ассоциация предприятий безопасности Школа без опасности 2015 г. Остановите смерть! 30 марта 2015 года в здании Свердловского областного суда в Екатеринбурге состоялась 3-я Научно-практическая конференция «Совершенствование правовой базы реализации Стратегии государственной антинаркотической политики...»

«Издания, представленные в фонде НТБ, 2005-2015гг. Раздел по УДК 629.3 «Наземные средства транспорта»1. Безопасность наземных транспортных средств: учебник для студ. вузов, обуч. по спец. «Наземные транспортно-технологические комплексы и средства» (УМО).Тула: ТулГУ, 2014.-310с. 1 экз. Местонахождение БС 2. Харламова Т.И. Автомобиль или российская телега: уроки истории.-М.: Издатель Мархотин П.Ю., 2014 – 10 экз. Местонахождение БС 3. Бочкарев С.В. Диагностика и надежность автоматизированных...»

«ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования «Тихоокеанский государственный университет» МЕТОДИЧЕСКИЕ УКАЗАНИЯ по выполнению курсовых работ по дисциплине Ресурсоведение для студентов всех форм обучения специальности Охрана окружающей среды и рациональное использование природных ресурсов Хабаровск 2007 УДК 911.3 Методические указания по выполнению курсовых работ по дисциплине Ресурсоведение для студентов специальности...»

«ЛИСТ СОГЛАСОВАНИЯ от 09.06.2015 Рег. номер: 792-1 (29.04.2015) Дисциплина: Сетевые технологии 02.03.03 Математическое обеспечение и администрирование Учебный план: информационных систем/4 года ОДО Вид УМК: Электронное издание Инициатор: Захаров Александр Анатольевич Автор: Захаров Александр Анатольевич Кафедра: Кафедра информационной безопасности УМК: Институт математики и компьютерных наук Дата заседания 30.04.2015 УМК: Протокол №7 заседания УМК: Дата Дата Результат Согласующие ФИО Комментарии...»

«Александр Андреевич Молдовян Михаил Александрович Вус Владимир Сергеевич Гусев Дмитрий Валерьевич Долгирев Информатика: введение в информационную безопасность Серия «Учебники и учебные пособия (Юридический Центр Пресс)» Текст предоставлен правообладателем http://www.litres.ru/pages/biblio_book/?art=11197745 Информатика: Введение в информационную безопасность / Под общ. ред. М. А. Вуса, предисл. Р. М. Юсупова и А. В. Федотова: Издательство Р. Асланова «Юридический центр Пресс»; Санкт-Петербург;...»







 
2016 www.metodichka.x-pdf.ru - «Бесплатная электронная библиотека - Методички, методические указания, пособия»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.