WWW.METODICHKA.X-PDF.RU
БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Методические указания, пособия
 


Pages:     | 1 |   ...   | 5 | 6 || 8 | 9 |   ...   | 14 |

«БЕЗОПАСНОСТЬ ЖИЗНЕДЕЯТЕЛЬНОСТИ УЧЕБНОЕ ПОСОБИЕ Под редакцией проф. С.Г. Плещица ИЗДАТЕЛЬСТВО САНКТ-ПЕТЕРБУРГСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА ЭКОНОМИКИ И ФИНАНСОВ ББК 68.9 Б 35 ...»

-- [ Страница 7 ] --

Неорганизованная вентиляция - вентиляция, осуществляемая через неплотности в окнах, дверях, стенах из-за некачественного строительства зданий или неправильной эксплуатации. Этот вид вентиляции не предусмотрен проектом.

Общая вентиляция осуществляется по всему объему помещения или рабочей зоны.

Местная вентиляция осуществляется в зоне ограниченного объема или рабочего места (над кухонной печью, над столом химического шкафа).

Естественная вентиляция осуществляется аэрационным, дефлекторным или смешанным способами.

Аэрационная вентиляция осуществляется за счет разности удельного веса холодного и теплого воздуха снаружи и внутри помещения, или напора ветра.

Дефлекторная вентиляция осуществляется за счет разности давлений на концах вентиляционного канала (трубы), которая возникает за счет обдувания скоростным напором ветра одного из концов трубы (как правило, вынесенного на крышу здания).

Чаще используют смешанные способы естественной вентиляции, когда используется и разность температур внутри и снаружи помещения, и скорость ветра.

Принудительная (механическая) вентиляция осуществляется тремя способами. Она бывает: вытяжная, приточная и приточно-вытяжная.

При вытяжной вентиляции вентилятором откачивается воздух из помещения. В результате разрежения чистый воздух из окружающей среды или подсобных помещений (через неплотности в окнах, дверях, воздуховодов) поступает внутрь помещения. Применяется, когда загрязнитель воздуха в помещении не является токсичным или пожаровзрывоопасным (избыточное тепло, продукты дыхания людей и животных, избыточная влажноть).

При приточной вентиляции свежий воздух нагнетается вентилятором в помещение, создавая в нем избыточное давление. При этом загрязненный воздух через окна, двери, воздуховоды выдавливается в окружающую среду. Применяется в случае незначительной концентрации в воздухе вредных веществ, но требуется дополнительная обработка свежего воздуха (подогрев, охлаждение, осушение, увлажнение, ароматизация и т. д.).

Приточно-вытяжная вентиляция предполагает наличие в одном помещении двух вентиляторов, один из которых работает в вытяжном режиме, а другой в приточном. Применяется в случае, когда загрязнитель воздуха токсичен, пожаровзрывоопасен или когда загрязнитель имеет большую концентрацию в воздухе.

В отдельных производственных помещениях, в которых существует опасность прорыва большого количества вредных веществ за короткое время, устанавливают дополнительную аварийную вентиляцию. Для аварийной вентиляции используют высокопроизводительные осевые вентиляторы, с автоматическим включением с одновременной подачей звукового сигнала.

Кондиционирование воздуха - это создание и поддержание в закрытых помещениях определенных параметров воздушной среды по температуре, влажности, чистоте, составу, скорости движения и давлению воздуха.

Параметры воздушной среды должны быть благоприятными для человека и устойчивыми.

Современные автоматические кондиционерные установки очищают воздух, подогревают или охлаждают его, увлажняют или высушивают в зависимости от времени года и других условий, подвергают ионизации или озонированию, а также подают его в помещения с определенной скоростью.

4.2. Требования к освещению рабочего места

Освещение воздействует на организм человека и выполнение производственных заданий. Правильное освещение уменьшает количество несчастных случаев и повышает производительность труда на 15%.

Неправильное освещение может быть причиной таких заболеваний, как близорукость, спазм, аккомодация, зрительное утомление и других болезней, понижает умственную и физическую работоспособность, увеличивает число ошибок в производственных процессах, аварий и несчастных случаев.

Освещение, отвечающее техническим и санитарно-гигиеническим нормам, называется рациональным.

Создание такого освещения на производстве является важной и актуальной задачей.

В помещениях используется естественное и искусственное освещение. Естественное освещение предполагает проникновение внутрь зданий солнечного света через окна и различного типа светопроемы (верхние световые фонари).

Естественное освещение имеет положительные и отрицательные стороны. Более благоприятный спектральный состав (наличие ультрафиолетовых лучей), высокая диффузность (рассеянность) света способствует улучшению зрительных условий работы. В то же время при естественном освещении освещенность во времени и пространстве непостоянна, зависит от погодных условий, возможно тенеобразование и ослепление при ярком солнечном свете. На освещение влияют местонахождение и устройство зданий, величина застекленной поверхности, форма и расположение окон, расстояние между зданиями и др.

Искусственное освещение помогает избежать многих недостатков, характерных для естественного освещения и обеспечить оптимальный световой режим. Однако условия гигиены труда требуют максимального использования естественного освещения, так как солнечный луч оказывает оздоровляющее воздействие на организм. Он не используется только в тех помещениях, где это противопоказано технологическими условиями производства.

Различают также совмещённое (комбинированное) освещение, когда используют в светлое время суток естественный и искусственный свет.

По конструктивному выполнению освещение характеризуется следующим образом (см. схему).

ОСВЕЩЕНИЕ

ЕСТЕСТВЕННОЕ ИСКУССТВЕННОЕ СОВМЕЩЕННОЕ

(КОМБИНИРОВАННОЕ)

ВЕРХНЕЕ ОБЩЕЕ

БОКОВОЕ КОМБИНИРОВАННОЕ

КОМБИНИМЕСТНОЕ ОСВЕЩЕНИЕ

РОВАННОЕ

БЕЗОПАСНОСТИ

РАБОЧЕЕ

АВАРИЙНОЕ ЭВАКУАЦИОННОЕ

ОСВЕЩЕНИЕ

ДЕЖУРНОЕ

ОХРАННОЕ

Искусственное освещение подлежит обязательному нормированию и подразделяется на рабочее, аварийное, дежурное и охранное.

Рабочее освещение обеспечивает нормируемые осветительные условия в помещениях и местах производства работ вне зданий. Его устраивают во всех помещениях, предназначенных для работы (прохода людей и движения транспортных средств.

Аварийное освещение разделяется на освещение безопасности и эвакуационное освещение. Освещение безопасности предусматривается в тех случаях, когда отключение рабочего освещения и связанные с этим нарушения могут вызвать взрыв, пожар, нарушение технологического процесса и так далее, что может привести к травматизму и гибели людей (оно планируется не менее 5% нормируемой доли общего освещения).

Эвакуационное освещение предусматривается в местах (опасных для перехода людей, на лестницах в проходах пи числе эвакуирующих более 50 человек, по основным проходам производственных помещений, в которых работает более 50 человек, а также если отсутствует в помещении естественное освещение, если в помещении одновременно работают более 100 человек и если возникает опасность травматизма из-за продолжения работы производственного оборудования после отключения рабочего освещения.

Основные светотехнические характеристики.

Правильно спроектированное и рационально выполненное освещение производственных помещений оказывает положительное воздействие на работающих, способствует повышению эффективности и безопасности труда, снижает утомление и травматизм, помогает сохранить высокую работоспособность. Свет представляет собой электромагнитное излучение с длиной волны 0,38-0,76 мкм. Освещение характеризуется количественными и качественными показателями. К количественным показателям относятся:

световой поток - часть лучистого потока, воспринимаемая человеком как свет; характеризует мощность светового излучения, измеряемую в люменах [лм];

освещённость - поверхностная плотность светового потока; определяется как отношение светового потока, равномерно падающего на освещаемую поверхность, к её площади, измеряется в люксах [лк];

яркость поверхности под углом к нормали - это отношение силы света, излучаемого освещаемой или светящейся поверхностью в этом направлении, к площади проекции этой поверхности на плоскость, перпендикулярную к данному направлению.

Для качественной оценки условий зрительной работы используют такие показатели, как фон, контраст объекта с фоном, показатель ослеплённости, видимости.

Фон - это поверхность, на которой происходит различие объекта. Фон характеризуется способностью поверхности отражать падающий на неё световой поток. Эта способность (коэффициент отражения) определяется как отношение отражённого от поверхности светового потока к прадающему на неё световому потоку.

Контраст объекта с фоном - степень различения объекта и фона - характеризуется соотношением яркостей рассматриваемого объекта (точки, линии, знака, пятна, трещины или других элементов) и фона.

Показатель ослеплённости - критерий оценки слепящего действия, создаваемого осветительной установкой.

Видимость - способность глаза воспринимать объект. Она зависит от освещённости, размера объекта, его яркости, контраста объекта с фоном, длительности экспозиции.

При организации производственного освещения необходимо обеспечить равномерное распределение яркости на рабочей поверхности и окружающих предметах.

Перевод взгляда с ярко освещенной на слабо освещённую поверхность вынуждает глаз переадаптироваться, что ведёт к утомлению зрения и, соответственно, к снижению производительности труда.

Производственное освещение должно обеспечить отсутствие в поле зрения работающего резких теней.

Наличие резких теней искажает размеры и формы объектов различения и тем самым повышает утомляемость, снижает производительность труда. Особенно вредны движущиеся тени, которые могут привести к травмам. Тени необходимо смягчать, применяя, например, светильники со светорассеивающими молочными стеклами. При естественном освещении для этой цели используются солнцезащитные устройства (жалюзи, козырьки и т.д.).

Для улучшения видимости объектов в поле зрения работающего должна отсутствовать прямая и отражённая блескость. Блескость - это повышенная яркость светящихся поверхностей, вызывающая нарушение зрительных функций (ослепленности) и тем самым ухудшающая видимость объектов. Блескость ограничивают уменьшением яркости источника света, правильным выбором защитного угла светильника, увеличением высоты подвеса светильников, правильным направлением светового потока на рабочую поверхность, а также изменением угла наклона рабочей поверхности.

При организации производственного освещения следует выбирать спектральный состав светового потока.

Это требование особенно существенно для обеспечения правильной цветопередачи, а в отдельных случаях - для усиления цветовых контрастов. Оптимальный спектральный состав обеспечивается естественным освещением.

Осветительные установки должны быть удобны и просты в эксплуатации, долговечны, отвечать требованиям эстетики, электробезопасности, а также не должны становиться причиной взрыва или возникновения пожара.

Нормирование производственного освещения.

Естественное и искусственное освещение в помещениях регламентируется нормами СНиП 23—05—95 в зависимости от характера зрительной работы, системы и вида освещения, фона, контраста объекта с фоном. Характер зрительной работы определяется наименьшим размером объекта различения (например, при работе с приборами — толщиной линии градуировки шкалы, при чертежных работах — толщиной самой тонкой линии). В зависимости от размера объекта различения все виды работ, связанные со зрительным напряжением, делятся на восемь разрядов, которые, в свою очередь, в зависимости от фона и контраста объекта с фоном делятся на четыре подразряда.

Искусственное освещение нормируется количественными (минимальной освещенностью) и качественными показателями (показателями ослепленности и дискомфорта, коэффициентом пульсации освещенности). Принято раздельно нормировать искусственное освещение в зависимости от источников применяемого света и системы освещения. Например, нормативное значение освещенности для газоразрядных ламп из-за их большей светоотдачи при прочих равных условиях выше, чем для ламп накаливания. При совместном (комбинированном) освещении доля общего освещения должна составлять не менее 10% от нормируемой освещенности (не менее 150 лк для газоразрядных ламп и 50 лк для ламп накаливания).

Для ограничения слепящего действия светильников общего освещения в производственных помещениях показатель освещенности не должен превышать 20—80 единиц в зависимости от продолжительности и разряда зрительной работы. При освещении производственных помещений газоразрядными лампами, питаемыми переменным током промышленной частоты 50 Гц, глубина пульсаций не должна превышать 10—20% в зависимости от характера выполняемой работы.

Естественное освещение характеризуется тем, что создаваемая освещенность изменяется в зависимости от времени суток, года, метеорологических условий. Поэтому в качестве критерия оценки естественного освещения принята относительная величина коэффициент естественной освещенности КЕО, не зависящий от перечисленных параметров. КЕО — это отношение освещенности в данной точке внутри помещения Евн к измеренному в то же время значению наружной горизонтальной освещенности Ен, создаваемой светом полностью свободного от облаков небосвода, выраженное в процентах, то есть КЕО = 100Евн/Ен.

Совмещенное освещение допускается для производственных помещений, в которых выполняются зрительные работы I и II разрядов; для производственных помещений, строящихся в северной климатической зоне страны; для помещений, в которых по условиям технологии требуется поддерживать стабильными параметры воздушной среды. При этом общее искусственное освещение помещений должно обеспечиваться газоразрядными лампами, а нормы освещенности повышаются на одну ступень.

Источники света и осветительные приборы.

Источники света, применяемые для искусственного освещения, делят на две группы — газоразрядные лампы и лампы накаливания. Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явления люминесценции, которое невидимое ультрафиолетовое излучение пре- образует в видимый свет.

Благодаря удобству в эксплуатации, простоте в изготовлении, отсутствию дополнительных пусковых устройств, надежности работы при колебаниях напряжения в т. д. лампы накаливания находят широкое применение в промышленности. Наряду с отмеченными преимуществами лампы накаливания имеют и недостатки: у них низкая световая отдача, сравнительно малый срок службы (до 2,5 тыс. ч) в спектре преобладают желтые в красные лучи, что сильно отличает их спектральный состав от солнечного света.

В последние годы все большее распространение получают галогеновые лампы — лампы накаливания с йодным циклом. Наличие в их колбе паров йода позволяет повысить температуру накала нити, то есть световую отдачу лампы (до 40 лм/Вт).

Пары вольфрама, испаряющиеся с нити накаливания, соединяются с йодом о вновь оседают на вольфрамовую спираль, препятствуя распылению вольфрамовой нити и увеличивая срок службы лампы до З тыс. ч.

Спектр излучения галогеновой лампы более близок к естественному, чем спектр лампы накаливания.

Основным преимуществом газоразрядных ламп перед лампами накаливания является большая световая отдача 40—110 лм/Вт. Они имеют значительно больший срок службы — у некоторых типов ламп он достигает 8— 12 тыс. ч. Газоразрядные лампы могут иметь световой поток любого желаемого спектра. Основным недостатком газоразрядных ламп является пульсация светового потока. К недостаткам следует отнести также длительный период разгорания, необходимость применения специальных пусковых приспособлений, облегчающих зажигание ламп.

При выборе источников света для производственных помещений необходимо руководствоваться общими рекомендациями: отдавать предпочтение газоразрядным лампам как энергетически более экономичным и обладающим большим сроком службы; для уменьшения первоначальных затрат на осветительные установки и расходов на их эксплуатацию необходимо по возможности использовать лампы наименьшей мощности, но без ухудшения качества освещения.

4.3. Защита от производственных вибраций, шумов и других колебательных движений. Защита от пыли Защита от вибрации.

Напомню Вам, что под вибрацией понимают возвратно-поступательное движение твердого тела. Это явление широко рассмотрено в производственной сфере при работе различных механизмов и машин.

Различают вибрацию локальную, общую и смешанную.

Общая вибрация преобладает на транспортных машинах, лифтах и так далее, где вибрируют полы, стены или основание оборудования.

Локальная имеет место в основном при работе с вибрирующим ручным инструментом или настольным оборудованием.

Для определения степени и последствий воздействия вибрации на человека пользуются частотой вибрации, измеряемой в герцах (Гц).

Тело человека имеет собственные частоты вибрации (плечевой пояс, бедра, голова в положении «стоя» Гц, голова в положении «сидя» - 25-30 Гц, большинство внутренних органов - 6-9 Гц), которые в сочетании с внешней вибрацией могут привести к несчастным случаям и нанести вред здоровью человека (головные боли, головокружения, нарушения сна, снижение работоспособности, ухудшение самочувствия, нарушения сердечной деятельности и другие).

При частоте колебаний рабочих мест, близкой к собственным частотам внутренних органов, возможны механические повреждения или даже разрывы.

Общая вибрация с частотой менее 0,7 Гц, определяемая как качка может привести к морской болезни, вызванная нарушением нормальной деятельности вестибулярного аппарата по причине резонансных явлений.

Местная вибрация малой интенсивности может благоприятно воздействовать на организм человека, восстанавливать трофические изменения, улучшать функциональное состояние центральной нервной системы, ускорять заживление ран и т. д. При увеличении интенсивности колебаний и длительности ее воздействия могут привести к вибрационной болезни.

Поэтому, в целях защиты людей от вибрации предусмотрено нормирование вибраций.

Различают гигиеническое и техническое нормирование вибраций.

Гигиеническое - это когда ограничивают параметры вибрации рабочих мест и поверхностей контакта с руками работающих.

Техническое - ограничивают параметры вибрации оборудования и инструмента. Эти нормы закладываются при их проектировании.

Разработаны нормативные документы по ГОСТу ССБГ (система стандартов безопасности труда), в которых законодательно закреплены предельно допустимые величины вибрации.

Для снижения воздействия вибрирующих машин и оборудования на организм человека применяются следующие меры и средства:

o замена инструмента или оборудования с вибрирующими рабочими органами на невибрирующие в процессах, где это возможно (например, замена электро-механических кассовых машин на электронные);

o применение виброизоляции вибрирующих машин относительно основания (например, применение рессор, резиновых прокладок, пружин, амортизаторов);

использование дистанционного управления в технологических процессах (например, исo пользование телекоммуникаций для управления вибротранспортером из соседнего помещения);

o использование автоматики в технологических процессах, где работают вибрирующие машины (например, управление по заданной программе);

o использование ручного инструмента с виброзащитными рукоятками, специальной обуви и перчаток.

Помимо технических средств и методов для снижения воздействия вибрации на человека необходимо проводить гигиенические и лечебно-профилактические мероприятия. В соответствии с положением о режиме труда работников виброопасных профессий общее время контакта с вибрирующими машинами, не должно превышать 2/3 длительности рабочего дня. Производственные операции должны распределяться между работниками так, чтобы продолжительность непрерывного воздействия вибрации, включая микропаузы, не превышала 15мин. Рекомендуется при этом два регламентированных перерыва (для активного отдыха, проведения производственной гимнастики по специальному комплексу гидропроцедур): 20 мин (через 1-2 ч после начала смены) и 30 мин - через 2 ч после обеденного перерыва.

К работе с вибрирующими машинами и оборудованием допускаются лица не моложе 18 лет, получившие соответствующую квалификацию, сдавшие технический минимум по правилам безопасности и прошедшие медицинский осмотр.

Работа с вибрирующим оборудование, как правило, должна проводиться в отапливаемых помещениях с температурой воздуха не менее 160С, при влажности 40-60% и скорости движения не более 0,3 м/с. При невозможности создания подобных условий (работа на открытом воздухе, подземные работы и т. п.) для периодического обогрева должны быть предусмотрены специальные отапливаемые помещения с температурой воздуха не менее 220С, относительной влажностью 40-60% и скоростью движения воздуха 0,3 м/с.

Для повышения защитных свойств организма, работоспособности и трудовой активности следует использовать специальные комплексы производственной гимнастики, витаминопрофилактику (2 раза в год комплекс витаминов В, С, никотиновая кислота), спецпитание. Целесообразно также проводить в середине или в конце рабочего дня 5-10-минутные гидропроцедуры, сочетающие ванночки при температуре воды 380С и самомассаж верхних конечностей.

Защита от шумов.

Шум - это совокупность апериодичеких звуков различной интенсивности и частоты (шелест, дребезжание, скрип, визг и т. п.).

С физиологической точки зрения шум - это всякий неблагоприятно воспринимаемый звук. Его длительность может привести к профессиональному заболеванию - «шумовая болезнь».

По физической сущности шумы - это волнообразное движение частиц, упругой среды (газовой, жидкой или твердой).

Воздействие шума на организм человека вызывает негативное изменение в органах слуха, нервной и сердечно-сосудистой системах.

Степень воздействия шума зависит от параметров шума (амплитуда колебания, частота, скорость распространения и длина волны), длительности его действия на организм человека и индивидуальных особенностей человека.

Шум может привести к профессиональной тугоухости, заболеваниям желудочно-кишечного тракта, сдвигам в обменных процессах (основном, углеводном, витаминном, белковом, жировом и солевом) и функционированию состояния сердечно-сосудистой системы.

При действии шума очень высоких уровней (более 145 дБ) возможен разрыв барабанной перепонки.

В целях борьбы с шумом проводятся мероприятия технического и медицинского характера.

Основными из них являются:

устранение причины шума, то есть замена шумящего оборудования, механизмов на более современное нешумящее оборудование;

изоляция источника шума от окружающей среды (применение глушителей, экранов, звукопоглощающих строительных материалов);

ограждение шумящих производств зонами зеленых насаждений;

применение рациональной планировки помещений;

использование дистанционного управление при эксплуатации шумящего оборудования и машин;

использование средств автоматики для управления и контроля технологическими производственными процессами;

использование индивидуальных средств защиты (беруши, наушники, ватные тампоны);

проведение периодических медицинских осмотров с прохождением аудиометрии;

соблюдение режима труда и отдыха;

проведение профилактических мероприятий, направленных на восстановление здоровья.

Интенсивность звука определяется по логарифмической шкале громкости. В шкале - 140 дБ. За нулевую точку шкалы принят «порог слышимости» (слабое звуковое ощущение, едва воспринимаемое ухом, равное примерно 20 дБ), а за крайнюю точку шкалы - 140 дБ - максимальный предел громкости.

Громкость ниже 80 дБ обычно не влияет на органы слуха, громкость от 0 до 20 дБ - очень тихая; от20 до 40 - тихая; от 40 до 60 - средняя; от 60 до 80 - шумная; свыше 80 дБ - очень шумная.

Для измерения силы и интенсивности шума применяют различные приборы: шумомеры, анализаторы частот, корреляционные анализаторы и коррелометры, спектрометры и др.

Принцип работы шумомера состоит в том, что микрофон преобразует колебания звука в электрическое напряжение, которое поступает на специальный усилитель и после усиления выпрямляется и измеряется индикатором по градуированной шкале в децибелах.

Анализатор шума предназначен для измерения спектров шумов оборудования. Он состоит из электронного полосного фильтра с шириной полосы пропускания, равной 1/3 октавы.

Основными мероприятиями по борьбе с шумом являются рационализация технологических процессов с использованием современного оборудования, звукоизоляция источников шума, звукопоглощение, улучшенные архитектурно-планировочные решения, средства индивидуальной защиты.

На особо шумных производственных предприятиях используются индивидуальные шумозащитные приспособления: антифоны, противошумные наушники и ушные вкладыши типа «беруши». Эти средства должны быть гигиеничными и удобными в эксплуатации.

В России разработана система оздоровительно-профилактических мероприятий по борьбе с шумом на производствах, среди которых важное место занимают санитарные нормы и правила. Выполнение установленных норм и правил контролируют органы санитарной службы и общественного контроля.

Защита от производственной пыли.

Производственная пыль является одним из широко распространенных неблагоприятных факторов, оказывающих негативное влияние на здоровье работающих. Производственной пылью называют взвешенные в воздухе, медленно оседающие твердые частицы размерами от нескольких десятков до долей микрон. Многие виды производственной пыли представляют собой аэрозоль.

Она классифицируется следующим образом (см. схему).

–  –  –

Производственная пыль может быть причиной различных болезней:

специфических (аллергия, иневмокониозы - болезни легких) неспецифические (болезни верхних дыхательных путей, язвенные дерматиты, экземы, заболевания глаз - конъюнктивит) Наибольшую опасность представляет силикоз, связанный с длительным вдыханием пыли, содержащей свободную двуокись кремния (SiO). Проработавший 2-4 года в условиях этой пыли может получить летальный исход.

Меры профилактики пылевых заболеваний. Эффективная профилактика профессиональных пылевых болезней предполагает гигиеническое нормирование, технологические мероприятия, индивидуальные средства защиты и лечебно-профилактические мероприятия.

Гигиеническое нормирование. Основой проведения мероприятий по борьбе с производственной пылью является гигиеническое нормирование. Соблюдение установленных ГОСТом предельно допустимых концентраций (ПДК) - основное требование при проведении предупредительного и текущего санитарного надзора.

Систематический контроль за состоянием уровня запыленности осуществляют лаборатории центров санэпиднадзора, заводские санитарно-химические лаборатории. На администрацию предприятий возложена ответственность за поддержание условий, препятствующих превышению ПДК пыли в воздушной среде.

При разработке оздоровительных мероприятий основные гигиенические требования должны предъявляться к технологическим процессам и оборудованию, вентиляции, строительно-планировочным решениям, рациональному медицинскому обслуживанию работающих, использованию средств индивидуальной защиты.

Методы и средства защиты от пыли:

внедрение непрерывных технологий с закрытым циклом (использование закрытых конвейеров, трубопроводов, кожухов);

автоматизация и дистанционное управление технологическими процессами (особенно при погрузоразгрузочных и фасовочных операциях);

замена порошкообразных продуктов брикетами, пастами, суспензиями, растворами;

смачивание порошкообразных продуктов при транспортировке (душевание);

переход с твердого топлива на газообразное или электроподогрев;

применение общей и местной вытяжной вентиляции помещений и рабочих мест;

применение индивидуальных средств защиты (очков, противогазов, респираторов, спецодежды, обуви, мазей).

Лечебно-профилактические мероприятия. В системе оздоровительных мероприятий важен медицинский контроль за состоянием здоровья работающих. В соответствии с действующими правилами обязательным является проведение предварительных (при поступлении на работу) и периодических медицинских осмотров.

Основная задача периодических осмотров - своевременное выявление ранних стадий заболевания и предупреждение развития пневмокониоза, определение профпригодности и проведение эффективных лечебнопрофилактических мероприятий.

Среди профилактических мероприятий, направленных на повышение реактивности организма и сопротивляемости пылевым поражениям легких, наибольшую эффективность обеспечивают УФ-облучение, тормозящее склеротические процессы; щелочные ингаляции, способствующие санации верхних дыхательных путей, дыхательная гимнастика, улучшающая функцию внешнего дыхания, диета с добавлением метионина и витаминов.

4.4. Защита от ионизирующих излучений Ионизирующие излучения - это электромагнитные излучения, которые создаются при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образуют при взаимодействии со средой ионы различных знаков.

Источники ионизирующих излучений. На производстве источниками ионизирующих излучений могут быть используемые в технологических процессах радиоактивные изотопы (радионуклиды) естественного или искусственного происхождения, ускорительные установки, рентгеновские аппараты, радиолампы.

Искусственные радионуклиды в результате ядерных превращений в тепловыделяющих элементах ядерных реакторов после специального радиохимического разделения находят применение в экономике страны. В промышленности искусственные радионуклиды применяются для дефектоскопии металлов, при изучении структуры и износа материалов, в аппаратах и приборах, выполняющих контрольно-сигнальные функции, в качестве средства гашения статического электричества и т. п.

Естественными радиоактивными элементами называют радионуклиды, образующиеся из находящихся в природе радиоактивных тория, урана и актиния.

Виды ионизирующих излучений.

В решении производственных задач имеют место разновидности ионизирующих излучений.

Альфа-излучение представляет собой поток ядер гелия, испускаемых главным образом естественным радионуклидом при радиоактивном распаде, имеют массу 4 у. е. и заряд +2.Энергия альфа-частиц составляет 4-7 Мэв. Пробег альфа-частиц в воздухе достигает 8–10 см, в биологической ткани несколько десятков микрометров.

Так как пробег альфа-частиц в веществе невелик, а энергия очень большая, то плотность ионизации на единицу длины пробега у них высока (на 1 см до десятка тысяч пар-ионов).

Бета-излучение – поток электронов или позитронов при радиоактивном распаде. Бета-частицы имеют массу, равную 1/1838 массы атома водорода, единичный отрицательный (бета-частица) или положительный (позитрон) заряд. Энергия бета-излучения не превышает нескольких Мэв. Пробег в воздухе составляет от 0,5 до 2 м, в живых тканях – 2-3 см. Их ионизирующая способность ниже альфа-частиц (несколько десятков пар-ионов на 1 см пути).

Нейтроны – нейтральные частицы, имеющие массу атома водорода. Они при взаимодействии с веществами теряют свою энергию в упругих (по типу взаимодействия биллиардных шаров) и неупругих столкновениях (удар шарика в подушку).

Гамма-излучение - фотонное излучение, возникающее при изменении энергетического состояния атомных ядер, при ядерных превращениях или при аннигиляция частиц. Источники гамма-излучения, используемые в промышленности, имеют энергию от 0,01 до 3 Мэв. Гамма-излучение обладает высокой проникающей способностью и малым ионизирующим действием (низкая плотность ионизации на единицу длины).

Рентгеновское излучение - фотонное излучение, состоящее из тормозного и (или) характеристического излучения, возникает в рентгеновских трубах, ускорителях электронов, с энергией фотонов не более 1 Мэв. Тормозное излучение - фотонное излучение с непрерывным энергетическим спектром, возникающее при уменьшении кинетической энергии заряженных частиц. Характеристическое излучение - это фотонное излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома.

Рентгеновское излучение, так же как и гамма-излучение, имеет высокую проникающую способность и малую плотность ионизации среды.

Влияние ионизирующих излучений на живой организм. XXI век невозможно представить без современного и постоянно совершенствуемого ядерного оружия, разбросанных по всей территории Земного шара крупных объектов атомной энергетики и многих сложных промышленных производств, использующих в технологическом процессе различные радиоактивные вещества. Все это предопределило появление, а затем и нарастание интенсивности такого негативного фактора среды обитания, как ионизирующие излучения, представляющие значительную угрозу для жизнедеятельности человека и требующие проведения надежных мер по обеспечению радиационной безопасности работающих и населения.

Процессы взаимодействия ионизирующих излучений с веществом клетки, в результате которых образуются ионизированные и возбужденные атомы и молекулы, являются первым этапом развития лучевого поражения.

Эффект воздействия источников ионизирующих излучений на организм зависит от ряда причин, главными из которых принято считать уровень поглощенных доз, время облучения и мощность дозы, объем тканей и органов, вид излучения.

Заболевания, вызываемые действием ионизирующих излучений. Важнейшие биологические реакции организма человека на действие ионизирующей радиации условно разделяют на две группы. К первой относятся острые поражения, ко второй - отдаленные последствия, которые в свою очередь подразделяются на соматические и генетические эффекты.

Острые поражения. В случае одномоментного тотального облучения человека значительной дозой или распределения ее на короткий срок эффект от облучения наблюдается уже в первые сутки, а степень поражения зависит от величины поглощенной дозы.

При облучении человека дозой менее 100 бэр, как правило, отмечаются лишь легкие реакции организма, проявляющиеся в формуле крови, изменении некоторых вегетативных функций.

При дозах облучения более 100 бэр развивается острая лучевая болезнь, тяжесть течения которой зависит от дозы облучения. Первая степень лучевой болезни (легкая) возникает при дозах 100-200 бэр, вторая (средней тяжести) - при дозах 200-300 бэр, третья (тяжелая) - при дозах 300-500 бэр и четвертая (крайне тяжелая) при дозах более 500 бэр.

Дозы однократного облучения 500-600 бэр при отсутствии медицинской помощи считаются абсолютно смертельными.

Другая форма острого поражения проявляется в виде лучевых ожогов. В зависимости от поглощенной дозы ионизирующей радиации имеют место реакции I степени (при дозе до 500 бэр), II (до 800 бэр), III (до 1200 бэр) и IV степени (при дозе выше 1200 бэр), проявляющиеся в разных формах: от выпадения волос, шелушения и легкой пигментации кожи (I степень ожога) до язвенно-некротических поражений и образования длительного незаживающих трофических язв (IV степень лучевого поражения).

При длительном повторяющемся внешнем или внутреннем облучении человека в малых, но превышающих допустимые величины дозах возможно развитие хронической лучевой болезни.

Отдаленные последствия. К отдаленным последствиям соматического характера относятся разнообразные биологические эффекты, среди которых наиболее существенными являются лейкемия, злокачественные новообразования, катаракта хрусталика глаза и сокращение продолжительности жизни.

Лейкемия - относительно редкое заболевание. Большинство радиобиологов считают, что вероятность возникновения лейкемии составляет 1-2 случая в год на 1 млн населения при облучении все популяции дозой 1 бэр.

Злокачественные новообразования. Первые случаи развития злокачественных новообразований от воздействия ионизирующей радиации описаны в начале XX столетия. Это были случаи рака кожи кистей рук у работников рентгеновских кабинетов.

Сведения о возможности развития злокачественных новообразований у человека пока носят описательн6ых характер, несмотря на то, что в ряде экспериментальных исследований на животных были получены некоторые количественные характеристики. Поэтому точно указать минимальные дозы, которые обладают бластомогенным эффектом, не представляется возможным.

Развитие катаракты наблюдалось у лиц: переживших атомные бомбардировки в Хиросиме и Нагасаки; у физиков, работавших на циклотронах; у больных, глаза которых подвергались облучению с лечебной целью. Одномоментная катарактогенная доза ионизирующей радиации, по мнению большинства исследователей, составляет около 200бэр. Скрытый период до появления первых признаков развития поражения обычно составляет от 2до 7 лет.

Сокращение продолжительности жизни в результате воздействия ионизирующей радиации на организм обнаружено в экспериментах на животных (предполагают, что это явление обусловлено ускорением процессов старения и увеличением восприимчивости к инфекциям). Продолжительность жизни животных, облученных дозами близкими к летальным, сокращается на 25-50% по сравнению с контрольной группой. При меньших дозах срок жизни животных уменьшается на 2-4% на каждые 100 рад.

Достоверных данных о сокращении сроков жизни человека при длительном хроническом облучении малыми дозами до настоящего времени не получено.

По мнению большинства радиобиологов, сокращение продолжительности жизни человека при тотальном облучении находится в пределах 1-15 дней на 1 бэр.

В отличие от соматических генетические эффекты действия радиации обнаружить трудно, так как они действуют на малое число клеток и имеют длительный скрытый период, измеряемый десятками лет после облучения. Такая опасность существует даже при очень слабом облучении, которое хотя и не разрушает клетки, но способно вызвать мутации хромосом и изменить наследственные свойства. Большинство подобных мутаций проявляется только в случае, когда зародыш получает от обоих родителей хромосомы, поврежденные одинаковым образом. Результаты мутаций, в том числе и смертность от наследственных эффектов - так называемая генетическая смерть, наблюдались задолго до того, как люди начали строить ядерные реакторы и применять ядерное оружие. Мутации могут быть вызваны космическими лучами, а также естественным радиационным фоном Земли, на долю которого по оценкам специалистов приходится 1 % мутаций человека.

Установлено, что не существует минимального уровня радиации, ниже которого мутации не происходит.

Общее количество мутаций, вызванных ионизирующим излучением, пропорционально численности населения и средней дозе облучения. Появление генетических эффектов мало зависит от мощности дозы, а определяется суммарной накопленной дозой независимо от того, получена она за 1 сутки или 50 лет. Полагают, что генетические эффекты не имеют дозового порога. Генетические эффекты определяются только эффективной коллективной дозой человеко-зиверты (чел-Зв), а выявление эффекта у отдельного индивида практически непредсказуемо.

В отличие от генетических эффектов, которые вызываются малыми дозами радиации, соматические эффекты всегда начинаются с определенной пороговой дозы: при меньших дозах повреждения организма не происходит. Другое отличие соматических повреждений от генетических заключается в том, что организм способен со временем преодолевать последствия облучения, тогда как клеточные повреждения не обратимы.

Значение некоторых доз и эффектов воздействия на организм приведены в табл.

Радиационное воздействие и соответствующие биологические эффекты Воздействие Облучение* Доза, Зв Мощность дозы или продол- Биологический эффект жительность 0,003 В течение недели О Практически отсутствует Ежедневно (в течении не- Лейкемия 0,01 О скольких лет) Единовременно Хромосомные нарушения в опухолеЛ вых клетках (культура соответствую

–  –  –

Нормирование воздействий ионизирующих излучений.

К основным правовым нормативам в области радиационной безопасности населения» №3-ФЗ от 09.01.96 г., Федеральный закон «Об использовании атомной энергии» № 170-ФЗ от 21.11.95 г., а также Нормы радиационной безопасности (НБР-99). Документ относится к категории санитарных правил (СП 2.6.1.758-99), утвержден Главным государственным санитарным врачом Российской Федерации 2 июля 1999 года и введен в действие с 1 января 2000 года. Нормы радиационной безопасности включают в себя термины и определения, которые необходимо использовать в решении проблем радиационной безопасности. Они также устанавливают три класса нормативов: основные дозовые пределы; допустимые уровни, являющиеся производными от дозовых пределов;

пределы годового поступления, объемные допустимые среднегодовые поступления, удельные активности, допустимые уровни загрязнения рабочих поверхностей и т. д.; контрольные уровни.

Нормирование ионизирующих излучений определяется характером воздействия ионизирующей радиации на организм человека. При этом выделяется два вида эффектов, относящихся в медицинской практике к болезням: детерминированные пороговые эффекты (лучевая болезнь, лучевой ожог, лучевая катаракта, аномалии развития плода и др.) и стохастические (вероятностные) беспороговые эффекты (злокачественные опухали, лейкозы, наследственные болезни).

Обеспечение радиационной безопасности определяется следующими основными принципами:

1. Принцип нормирования - непревышение допустимых пределов индивидуальных доз облучения граждан от всех источников ионизирующего излучения.

2. Принцип обоснования - запрещение всех видов деятельности по использованию источников ионизирующего излучения, при которых полученная для человека и общества польза не превышает риск возможного вреда, причиненного дополнительным к естественному радиационному фону облучения.

3. Принцип оптимизации - поддержание на возможно низком и достижимом уровне с учетом экономических и социальных факторов индивидуальных доз облучения и числа облучаемых лиц при использовании любого источника ионизирующего излучения.

Обеспечение безопасности при работе с ионизирующими излучениями.

Все работы с радионуклидами правила подразделяются на два вида: на работу с закрытыми источниками ионизирующих излучений и работу с открытыми радиоактивными источниками.

Закрытыми источниками ионизирующих излучений называются любые источники, устройство которых исключает попадание радиоактивных веществ в воздух рабочей зоны. Открытые источники ионизирующих излучений способны загрязнять воздух рабочей зоны. Поэтому отдельно разработаны требования к безопасной работе с закрытыми и открытыми источниками ионизирующих излучений на производстве.

Обеспечение радиационной безопасности требует комплекса многообразных защитных мероприятий, зависящих от конкретных условий работы с источниками ионизирующих излучений, а также от типа источника.

Главной опасностью закрытых источников ионизирующих излучений является внешнее облучение, определяемое видом излучения, активностью источника, плотностью потока излучения и создаваемой им дозой облучения и поглощенной дозой. Защитные мероприятия, позволяющие обеспечить условия радиационной безопасности при применении закрытых источников, основаны на знании законов распространения ионизирующих излучений и характера их взаимодействия с веществом. Главные из них следующие.

1.Доза внешнего облучения пропорциональна интенсивности излучения и времени действия.

2.Интенсивность излучения от точечного источника пропорциональна количеству квантов или частиц, возникающих в них в единицу времени, и обратно пропорциональна квадрату расстояния от источника.

3.Интенсивность излучения может быть уменьшена с помощью экранов.

Из этих закономерностей вытекают основные принципы обеспечения радиационной безопасности:

Уменьшение мощности источников до минимальных величин (защита количеством); сокращение времени работы с источниками (защита временем); увеличение расстояния от источника до работающих (защита расстоянием) и экранирование источников излучения материалами, поглощающими ионизирующие излучения (Защита экранами).

Защита количеством подразумевает проведение работы с минимальными количествами радиоактивных веществ, т.е. пропорционально сокращает мощность излучения. Однако требования технологического процесса часто не позволяют сократить количество радиоактивного вещества в источнике, что ограничивает на практике применение этого метода защиты.

Защита временем основана на сокращении времени работы с источником, что позволяет уменьшить дозы облучения персонала. Этот принцип особенно часто применяется при непосредственной работе персонала с малыми активностями.

Защита расстоянием - достаточно простой и надежный способ защиты. Это связано со способностью излучения терять свою энергию во взаимодействиях с веществом: чем больше расстояние от источника, тем больше процессов взаимодействия излучения с атомами и молекулами, что в конечном итоге приводит к снижению дозы облучения персонала.

Защита экранами - наиболее эффективный способ защиты от излучений. В зависимости от вида ионизирующих излучений для изготовления экранов применяют различные материалы, а их толщина определяется мощностью излучения. Лучшими экранами для защиты от рентгеновского и гамма-излучений являются материалы с большим Z, например свинец, позволяющий добиться нужного эффекта по краткости ослабления при наименьшей толщине экрана. Более дешевые экраны делаются из просвинцованного стекла, железа, бетона, барритобетона, железобетона и воды.

По своему назначению защитные экраны условно разделяются на пять групп:

1. Защитные экраны-контейнеры, в которые помещаются радиоактивные препараты. Они широко используются при транспортировке радиоактивных веществ и источников излучений.

2. Защитные экраны для оборудования. В этом случае экранами, полностью окружают все рабочее оборудование при положении радиоактивного препарата в рабочем положении или при включении высокого (или ускоряющего) напряжения на источнике ионизирующей радиации.

3. Передвижные защитные экраны. Этот тип защитных экранов применяется для защиты рабочего места на различных участках рабочей зоны.

4. Защитные экраны, монтируемые как части строительных конструкций (стены, перекрытия полов и потолков, специальные двери и т.д.). Такой вид защитных экранов предназначается для защиты помещений, в которых постоянно находится персонал, и прилегающей территории.

5. Экраны индивидуальных средств защиты (щиток из оргстекла, смотровые стекла пневмокостюмов, просвинцованные перчатки и др.).

Защита от открытых источников ионизирующих излучений предусматривает как защиту от внешнего облучения, так и защиту персонала от внутреннего облучения, связанного с возможным проникновением радиоактивных веществ в организм через органы дыхания, пищеварения или через кожу. Все виды работ с открытыми источниками ионизирующих излучений разделены на 3 класса. Чем выше класс выполняемых работ, тем жестче гигиенические требования по защите персонала от внутреннего переоблучения.

Способы защиты персонала при этом следующие:

1. Использование принципов защиты, применяемых при работе с источниками излучения в закрытом виде.

2. Герметизация производственного оборудования с целью изоляции процессов, которые могут явиться источниками поступления радиоактивных веществ во внешнюю среду.

3. Мероприятия планировочного характера. Планировка помещений предполагает максимальную изоляцию работ с радиоактивными веществами от других помещений и участков, имеющих иное функциональное назначение. Помещения для работ I класса должны размещаться в отдельных зданиях или изолированной части здания, имеющей отдельный вход. Помещения для работ II класса должны размещаться изолированно от других помещений; работы III класса могут проводиться в отдельных, специально выделенных комнатах.

4. Применение санитарно-гигиенических устройств и оборудования, использование специальных защитных материалов.

5. Использование средств индивидуальной защиты персонала. Все средства индивидуальной защиты, используемые для работы с открытыми источниками, разделяются на пять видов: спецодежда, спецобувь, средства защиты органов дыхания, изолирующие костюмы, дополнительные защитные приспособления.



Pages:     | 1 |   ...   | 5 | 6 || 8 | 9 |   ...   | 14 |

Похожие работы:

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт математики и компьютерных наук Кафедра информационной безопасности Ниссенбаум Ольга Владимировна ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ Учебно-методический комплекс. Рабочая программа для студентов специальности 10.05.03 Информационная безопасность автоматизированных систем, специализация «Обеспечение...»

«Дагестанский государственный институт народного хозяйства «Утверждаю» Ректор, д.э.н., профессор _Бучаев Я.Г. 30.08.2014г. Кафедра «Естественнонаучных дисциплин» РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Основы безопасности жизнедеятельности» Специальность 19.02.10 «Технология продукции общественного питания» Квалификация – Техник-технолог Махачкала – 2014г. УДК 614 ББК 68.9 Составитель – Гусейнова Батуч Мухтаровна, к.с.-х.н., доцент кафедры естественнонаучных дисциплин ДГИНХ. Внутренний рецензент –...»

«КАМЧАТСКИЙ КРАЕВОЙ СОЮЗ ПОТРЕБИТЕЛЬСКИХ ОБЩЕСТВ НЕГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «КАМЧАТСКИЙ КООПЕРАТИВНЫЙ ТЕХНИКУМ» РАССМОТРЕНО УТВЕРЖДАЮ из заседания кафедры права и социальноЗаместитель директора по учебно-методической гуманитарных дисциплин и организационной работе Протокол № _ от «_» 2014 г. Зав.кафедрой /И.Н. Шкрамада/ _/А.И. Лазарева/ МЕТОДИЧЕСКИЕ УКАЗАНИЯ И ЗАДАНИЯ ПО ВЫПОЛНЕНИЮ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ ДЛЯ СТУДЕНТОВ-ЗАОЧНИКОВ по...»

«ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ГОРОДСКОЙ УНИВЕРСИТЕТ УПРАВЛЕНИЯ ПРАВИТЕЛЬСТВА МОСКВЫ УТВЕРЖДАЮ Проректор по учебной и научной работе О.А. Бучнев «» 2013 г. РАБОЧАЯ ПРОГРАММА дисциплины по выбору аспиранта «ОСНОВЫ РАЗВИТИЯ МИРОВОЙ ЭКОНОМИКИ» по специальности 08.00.05 Экономика и управление народным хозяйством (по отраслям и сферам деятельности, в т.ч. экономика, организация и управление предприятиями, отраслями и...»

«По состоянию на 28.02.2015 г. Основные отзывы и предложения, поступившие на проект Стратегической программы исследований и разработок Технологической платформы «Авиационная мобильность и авиационные технологии»1. В.С. Шелобаев (ООО «Софтваре Провайдэр») Добрый день, создание центров коллективного пользования в области метрологии, производства аэродинамических моделей, изготовления элементов композитных конструкций и образцов и др (стр.96) непонятно на каких экономических основах, может речь...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт химии Кафедра органической и экологической химии Ларина Н.С. ГЕОХИМИЯ ОКРУЖАЮЩЕЙ СРЕДЫ Учебно-методический комплекс. Рабочая программа для студентов очной формы обучения по направлению 04.03.01 Химия, программа подготовки «Прикладной бакалавриат», профиль подготовки Химия окружающей среды,...»

«Главное управление МЧС России по Челябинской области Отдел формирования культуры безопасности жизнедеятельности населения, подготовки руководящего состава ПЛАН КОНСПЕКТЫ ПРОВЕДЕНИЯ ЗАНЯТИЙ ПО РЕКОМЕНДУЕМЫМ ТЕМАМ примерной программы обучения работающего населения в области безопасности жизнедеятельности г. Челябинск Общие положения. Обучение работников организаций в области безопасности жизнедеятельности организуется в соответствии с требованиями федеральных законов «О гражданской обороне» и «О...»

«НОВИНКИ ПО «ТАМОЖЕННОМУ ДЕЛУ» Вагин В.Д., Таможенные органы и их роль в обеспечении экономической безопасности в сфере ВЭД, учебное пособие, ИЦ «Интермедия», 2016. 144 с. Цена (твердый переплет) – 480 рублей. Аннотация. В учебном пособии рассматриваются вопросы, раскрывающие тему «Роль таможенных органов в обеспечении экономической безопасности внешне-экономической сферы» учебной дисциплины «Экономическая безопасность». Структура учебного пособия включает материал, предназначенный для усвоения...»

«Министерство образования и науки Российской Федерации Федеральное агентство по образованию Южно-Уральский государственный университет Кафедра «Экономика и экономическая безопасность» У9(2).я7 С50 В.Н. Смагин, В.А. Киселева ЭКОНОМИКА НЕДВИЖИМОСТИ Учебное пособие Челябинск Издательство ЮУрГУ ББК У9(2)–56.я7 + Х623.1.я7 Одобрено учебно-методической комиссией факультета экономика и предпринимательство Рецензенты: Лутовинов П.П., Аксенов В.М., Грудцына Л.Ю. С50 Смагин, В.Н. Экономика недвижимости:...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ УНИВЕРСИТЕТ ИТМО Е.П. Сучкова РАЗРАБОТКА ИННОВАЦИОННОЙ ПРОДУКЦИИ ПИЩЕВОЙ БИОТЕХНОЛОГИИ Учебно-методическое пособие Санкт-Петербург УДК 637.1/3 Сучкова Е.П. Разработка инновационной продукции пищевой биотехнологии. – СПб.: Университет ИТМО; ИХиБТ, 2015. – 40 с. Приведены содержание дисциплины и методические указания к практическим занятиям по дисциплинам «Разработка инновационной продукции пищевой биотехнологии» и «Разработка инновационной...»

«АДМИНИСТРАЦИЯ МУНИЦИПАЛЬНОГО ОБРАЗОВАНИЯ САРАПУЛЬСКИЙ РАЙОН ПОСТАНОВЛЕНИЕ 12 января 2015г с. Сигаево №1 О подготовке неработающего населения муниципального образования «Сарапульский район» к действиям по обеспечению защиты от опасностей, возникающих при ведении военных действий или вследствие этих действий В соответствии с Федеральным законом от 12 февраля 1998 года № 28-ФЗ «О гражданской обороне», Федеральным законом от 6 октября 2003 года № 131-ФЗ «Об общих принципах организации местного...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Институт математики и компьютерных наук Кафедра информационной безопасности Ниссенбаум Ольга Владимировна КРИПТОГРАФИЧЕСКИЕ МЕТОДЫ ЗАЩИТЫ ИИНФОРМАЦИИ Учебно-методический комплекс. Рабочая программа для студентов специальности 10.05.01 Компьютерная безопасность, специализация «Безопасность...»

«СОДЕРЖАНИЕ Стр.1. Система управления и содержание деятельности кафедры безопасность жизнедеятельности 1.1. Организационно-правовая деятельность кафедры 1.2. Система управления 1.3. Наличие и качество разработки документации 2. Образовательнвя деятельность 2.1. Характеристика профессиональной образовательной программы.. 2.2.1 Учебный план.. 2.2.2. Дисциплины, читаемые профессорско-преподавательским составом кафедры.. 2.2.3. Учебные программы дисциплин и практик, диагностические средства.....»

«Министерство образования и науки Российской Федерации Муромский институт (филиал) федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Владимирский государственный университет имени Александра Григорьевича и Николая Григорьевича Столетовых» (МИ (филиал) ВлГУ) УТВЕРЖДЕНО Директор МИ ВлГУ Н.В.Чайковская _ «»_2015 г. ОТЧЁТ о результатах самообследования основной образовательной программы 18.03.01 «Химическая технология» Рассмотрено на...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ РАСТИТЕЛЬНЫХ ПОЛИМЕРОВ» Кафедра основ безопасности систем и процессов ЛАБОРАТОРНЫЙ СТЕНД ДЛЯ ИЗМЕРЕНИЯ ШУМА Методические указания по выполнению лабораторно-расчетной работы для студентов всех направлений и форм обучения Cанкт Петербург УДК 331.45 Лабораторный стенд для...»

«ЛИСТ СОГЛАСОВАНИЯ от 20.06.2015 Рег. номер: 2073-1 (08.06.2015) Дисциплина: Анализ информационных рисков Учебный план: 090900.62 Информационная безопасность/4 года ОДО Вид УМК: Электронное издание Инициатор: Ниссенбаум Ольга Владимировна Автор: Ниссенбаум Ольга Владимировна Кафедра: Кафедра информационной безопасности УМК: Институт математики и компьютерных наук Дата заседания 30.03.2015 УМК: Протокол № заседания УМК: Дата Дата Результат Согласующие ФИО Комментарии получения согласования...»

«Обеспечение образовательного процесса основной и дополнительной учебной и учебно-методической литературой Специальность 09.02.02 Компьютерные сети № Автор, название, место издания, издательство, год издания учебной и учебноп/п методической литературы Общеобразовательный цикл Количество наименований 80 Количество экз.: 579 Коэффициент книгообеспеченности: 0,5 Агабекян, И. П. Английский язык для ссузов учебное пособие / И. П. Агабекян. 1. -М.: Проспект, 2012. Агабекян, И. П. Английский язык для...»

«ОГЛАВЛЕНИЕ МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ 1. Рекомендации по планированию и организации времени, необходимого для изучения дисциплины 2. Рекомендации по подготовке к практическому (семинарскому) занятию 3. Рекомендации по организации самостоятельной работы 4. Рекомендации по использованию методических материалов и фонда оценочных средств 5. Рекомендации по работе с литературой 6. Рекомендации по подготовке к промежуточной аттестации (зачет) УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ...»

«ЛИСТ СОГЛАСОВАНИЯ от 05.06.2015 Рег. номер: 1039-1 (18.05.2015) Дисциплина: криптографические методы защиты информации Учебный план: 10.03.01 Информационная безопасность/4 года ОДО Вид УМК: Электронное издание Инициатор: Ниссенбаум Ольга Владимировна Автор: Ниссенбаум Ольга Владимировна Кафедра: Кафедра информационной безопасности УМК: Институт математики и компьютерных наук Дата заседания 30.03.2015 УМК: Протокол №6 заседания УМК: Дата Дата Результат Согласующие ФИО Комментарии получения...»

«ЛИСТ СОГЛАСОВАНИЯ от 09.06.2015 Рег. номер: 2138-1 (09.06.2015) Дисциплина: Информационная безопасность 036401.65 Таможенное дело/5 лет ОЗО; 036401.65 Таможенное дело/5 лет Учебный план: ОДО; 38.05.02 Таможенное дело/5 лет ОЗО; 38.05.02 Таможенное дело/5 лет ОДО; 38.05.02 Таможенное дело/5 лет ОДО Вид УМК: Электронное издание Инициатор: Ниссенбаум Ольга Владимировна Автор: Ниссенбаум Ольга Владимировна Кафедра: Кафедра информационной безопасности УМК: Финансово-экономический институт Дата...»







 
2016 www.metodichka.x-pdf.ru - «Бесплатная электронная библиотека - Методички, методические указания, пособия»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.