WWW.METODICHKA.X-PDF.RU
БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Методические указания, пособия
 
Загрузка...

Pages:     | 1 |   ...   | 3 | 4 ||

«Богатырева И. А-А. РЕМОНТНО-ТЕХНОЛОГИЧЕСКИЕ МАТЕРИАЛЫ Методические указания для выполнения практических работ для студентов по направлению подготовки 110800.62 Агроинженерия Черкесск ...»

-- [ Страница 5 ] --

Реактопласты - при нагревании не размягчаются, после достижения некоторой температуры начинаются разрушаться. Изделия из них обычно делают различными способами. Одна из распространенных дешевых технологий заключается в следующем. Сначала готовят пресспорошки полимера. Затем пресс порошок засыпают в пресс-форму и прессуют при определенном давлении и температуре. При этом возникает сцепление между деформированными частицами, и после охлаждения материал готов к использованию. Возможно проведение полимеризации из исходных компонентов в заранее подготовленных формах. Так делают изделия из эпоксидных полимеров, кремнийорганической резины.


Достаточно дешевы и технологичны реактопласты на основе фенолформальдегидных полимеров (бакелит) и аминоформальдегидных полимеров. Их электрофизические характеристики невысоки.

Эпоксидные полимеры обладают хорошей механической прочностью, удовлетворительными электрофизическими характеристиками. Они являются полярными диэлектриками, некоторые марки эпоксидных материалов имеют диэлектрическую проницаемость до

16. Высокая полярность приводит к слабой водостойкости. Главное преимущество эпоксидных компаундов - простота технологии приготовления. Компаунды холодного отвержения получают смешиванием эпоксидной смолы, отвердителя и пластификатора. В период времени до начала твердения (от минут до часов) жидкую композицию можно заливать в требуемую форму. Часто компаунд используют для ремонта диэлектрических деталей в качестве клея.

Из других полимеров-реактопластов отметим диэлектрический материал с высокой механической прочностью - капролон, с большим диапазоном рабочих температур (-100С до +250С) - полиимиды и композиты на их основе.

Бумага и картон Важным преимуществом этих материалов является то, что они производятся из возобновляемого сырья, а именно из древесной массы.

Технология приготовления состоит из варки щепы и опилок в щелочном растворе с добавками. Целлюлозные волокна разделяются, полученная пульпа загущается удалением некоторого количества воды, из нее удаляются металлические примеси. Затем следует прокатка между вальцами, при повышенных давлении и температуре. Чем выше плотность бумаги, тем выше как механическая, так и электрическая прочность бумаги. Самые тонкие и прочные бумаги используются для изготовления конденсаторов. Достаточно отметить, что плотность конденсаторных бумаг достигает 1.6 т/м3, т.е. более, чем в 1.5 раза превышает плотность воды. При этом электрическая прочность бумаги толщиной 10 мкм, пропитанной трансформаторным маслом, составляет до 10 МВ/см.

Электротехнический картон используется в качестве диэлектрических дистанцирующих прокладок, шайб, распорок, в качестве изоляции магнитопроводов, пазовой изоляции вращающихся машин и т.п. Картон, как правило, используется после пропитки трансформаторным маслом. Электрическая прочность пропитанного картона достигает 40-50 кВ/мм. Поскольку она выше прочности трансформаторного масла, для увеличения электрической прочности трансформаторов зачастую устраивают в среде масла специальные барьеры из картона. Маслобарьерная изоляция обычно имеет прочность Е=300-400 кВ/см. Недостатком картона является гигроскопичность, в результате попадания влаги уменьшается механическая прочность и, резко уменьшается электрическая прочность (в 4 и более раз) Материалы для изоляторов В последнее время бурно развивается производство изоляторов для ВЛ на основе кремнийорганической резины. Этот материал относится к каучукам, основное свойство которых - эластичность. Это позволяет изготовлять из каучуков не только изоляторы, но и гибкие кабели. В энергетике используются разные типы каучуков: натуральные каучуки, бутадиеновые, бутадиен-стирольные, этиленпропиленовые и кремнийорганические.

Электротехнический фарфор является искусственным минералом, образованным из глинистых минералов, полевого шпата и кварца в результате термообработки по керамической технологии. К числу наиболее ценных его свойств относится высокая стойкость к атмосферным воздействиям, положительным и отрицательным температурам, к воздействию химических реагентов, высокие механическая и электрическая прочность, дешевизна исходных компонентов. Это определило широкое применение фарфора для производства изоляторов. Основные характеристики:

диэлектрическая проницаемость 7;

удельное объемное сопротивление 1011 Омм;

удельное поверхностное сопротивление 109-1012 Ом;

тангенс угла диэлектрических потерь 210-2;





электрическая прочность 25-30 кВ/мм, теплопроводность 1.0-1.2 Вт/(мК);

теплоемкость 1.2-1.5 кДж/(кгК);

плотность 2300-2500 кг/м3;

прочность на разрыв 90 МПа.

Сравнивая данные по фарфору и кремнийорганическим резинам, можно выделить, что недостатками фарфора являются хрупкость, высокая плотность, низкая теплопроводность, высокие диэлектрические потери.

Электротехническое стекло в качестве материала для изоляторов имеет некоторые преимущества перед фарфором. В частности у него более стабильная сырьевая база, проще технология, допускающая большую автоматизацию, возможность визуального контроля неисправных изоляторов.

По химическому составу стекло является набором окислов кремния, бора, алюминия, натрия, кальция и т.п. По термодинамическому состоянию оно представляет собой сильно загустевшую жидкость вследствие переохлаждения. Обычное, щелочное стекло непригодно для изготовления изоляторов ввиду растрескивания, помутнения и т.п. в условиях эксплуатации. Для этой цели разработано специальное малощелочное стекло. Его характеристики:

диэлектрическая проницаемость 7;

удельное объемное сопротивление 1012 Омм;

удельное поверхностное сопротивление 1014 Ом;

тангенс угла диэлектрических потерь 2.410-2;

электрическая прочность 48 кВ/мм, теплопроводность 0.92 Вт/(мК);

теплоемкость 1 кДж/(кгК);

плотность 2500 кг/м 3;

прочность на разрыв 90 МПа.

К недостаткам стекла, точнее способа его производства, относится большая энергоемкость получения материала, т.к. стекло длительно варят при высоких температурах.

Слюдяные материалы Слюда является основой большой группы электроизоляционных изделий. Главное достоинство слюды - высокая термостойкость наряду с достаточно высокими электроизоляционными характеристиками. Слюда является природным минералом сложного состава. Слюда используется в качестве электрической изоляции, как в виде щипаных тонких пластинок, в.т.ч. склееных между собой (миканиты), так и в виде слюдяных бумаг, в.т.ч. пропитанных различными связующими (слюдиниты или слюдопласты). Слюдяная бумага производится по технологии, близкой к технологии обычной бумаги. Слюду размельчают, готовят пульпу, на бумагоделательных машинах раскатывают листы бумаги.

Миканиты обладают лучшими механическими характеристиками и влагостойкостью, но они более дороги и менее технологичны.

Применение - пазовая и витковая изоляция электрических машин.

Слюдиниты - листовые материалы, изготовленные из слюдяной бумаги на основе мусковита. Иногда их комбинируют с подложкой из стеклоткани (стеклослюдинит), или полимерной пленки (пленкослюдинит). Бумаги, пропитанные лаком, или другим связующим, обладают лучшими механическими и электрофизическими характеристиками, чем непропитанные бумаги, но их термостойкость обычно ниже, т.к. она определяется свойствами пропитывающего связующего.

Слюдопласты - листовые материалы, изготовленные из слюдяной бумаги на основе флогопита и пропитанные связующими. Как и слюдиниты, они также комбинируются с другими материалами. По сравнению со слюдинитами они обладают несколько худшими электрофизическими характеристиками, но обладают меньшей стоимостью. Применение слюдинитов и слюдопластов - изоляция электрических машин, нагревостойкая изоляция электрических приборов При ремонте машин широко применяют полимерные материалы как для изготовления, так и для восстановления деталей. Это объясняется тем, что они обладают рядом ценных свойств (небольшая объемная масса, значительная прочность, хорошая химическая стойкость, высокие антифрикционные и диэлектрические свойства, вибростойкость, достаточно высокая теплостойкость некоторых из них и т. д.).

Использование полимеров позволяет во многих случаях избежать сложных технологических процессов при восстановлении деталей, таких, как сварка, наплавка, гальванические покрытия и др. Технология применения полимеров проста и доступна для внедрения на ремонтных предприятиях.

Основа пластических масс (пластмасс) — искусственная (синтетическая) или естественная смола, которая играет роль связующего материала и определяет их химические, механические, физические и другие свойства.

Различные пластмассы получают путем добавок к смоле наполнителей, пластификаторов, отвердителей, красителей и других материалов.

К полимерным материалам относятся пластики, которые, как и пластмассы, делятся на две большие группы: термореактивные (реактопласты) и термопластичные (термопласты).

Реактопласты при нагреве размягчаются, и их можно формовать прессованием или другими способами. После дальнейшего нагрева происходят определенные химические превращения, и они становятся твердыми, плотными, нерастворимыми и неплавкими. Повторно реактопласты по прямому назначению использовать нельзя.

Термопласты Размягчаются при нагреве, формируются литьем под давлением, а затем после охлаждения затвердевают, сохраняя приданную им форму. При повторном нагревании термопласты становятся мягкими и плавкими, т. е. пригодными для повторного использования.

Наполнители служат для улучшения физико-механических, диэлектрических, фрикционных или антифрикционных свойств, для повышения теплостойкости и уменьшения усадки полимерных материалов, а также для удешевления. В качестве наполнителей используют металлические слежку; портландцемент, хлопчатобумажные ткани, стеклоткань, бумагу, асбест, слюду, графит и др.

Пластификаторы — дибутилфталат, камфара, олеиновая кислота, диметил — и ди-этилфталат и другие — придают полимерам эластичность, вязкость и текучесть при переработке.

Отвердители — амины, магнезия, известь и другие — способствуют переходу полимеров в твердое и нерастворимое состояние.

Красители — нигрозин, охра, мумия, сурик и другие — сообщают полимерам определенный цвет.

Среди многих полимерных материалов, применяемых при ремонте машин, все большее значение приобретают полиамиды, полиэтилен, волокнит, стеклопластик, стиракрил, композиции на основе эпоксидных смол и т. д.

Основные полимерные материалы, используемые в ремонтном деле, характеризуются следующими свойствами.

Капроновая смола (капролактам) марки А и Б — твердый роговидный материал белого цвета или с желтоватым оттенком.

Поставляется в виде гранул. Предел прочности: при сжатии 70—80 МПа, при растяжении 60—65 МПа, при изгибе 80 МПа.

Капролактам применяют для изготовления и восстановления деталей с высокими антифрикционными свойствами (подшипники, зубчатые колеса, втулки, ролики, вкладыши), уплотнений, прокладок и т.

д.

Основной недостаток капрона — низкая теплопроводность, теплостойкость и усталостная прочность (6,5 МПа). Максимально допустимая рабочая температура капроновых деталей или покрытий на воздухе не должна превышать плюс 70—80°С и минус 20— 30°С.

Полиэтилен высокого давления марки Г1Э-150 — твердый роговидный материал молочно-белого цвета. Поставляется в виде гранул.

Предел прочности при растяжении 12—16 МПа, при сжатии 12,5 МПа, при изгибе 12—17 МПа.

Полиэтилен этой марки обладает высокими диэлектрическими свойствами, значительной сопротивляемостью к действию кислот и щелочей, хорошей стойкостью в среде различных масел, незначительной поглощаемостью влаги.

Полиэтилен ПЭ-150 Применяют для изоляции проводов, кабелей, деталей высокочастотных устройств, радиоаппаратуры, обкладки аппаратов, резервуаров, покрытия металлов. Полиэтиленовые пленки используют в качестве упаковочного материала.

Полиэтилен низкого давления марок Л, Э и П — твердый роговидный материал молочно-белого цвета. Выпускают его в виде гранул. Предел прочности при растяжении 22— 27 МПа (для марки Л), 22—35 МПа (для марки Э), 22—45 МПа (для марки П). Применяют его для изготовления и восстановления колес, крышек, кожухов, трубок и т. д.

Пресс-порошки ФКП-1 и ФК. П-2 выпускают в виде порошков.

Временное сопротивление статическому изгибу для порошка ФКП-1 составляет 50—60 МПа. Его применяют для изготовления деталей с повышенной механической прочностью и сопротивляемостью удару ( крышки, маховики, шестерни, шкивы, рукоятки и т. д.).

Порошок ФКП-2 имеет предел прочности при изгибе 75—85 МПа.

Этот порошок применяют для изготовления деталей с повышенной прочностью на удар и изгиб (фланцы, шестерни, шкивы, кулачки и т. д.).

СПИСОК ЛИТЕРАТУРЫ

1.Болотов, А. К. Конструкции для тракторов и автомобилей А. К. Болотов, А. А. Лопарев, В. И. Судницын.- М.:Колос,2006.-352 с

2. Пучин, Е. А., Технология ремонта машин [Текст]:учебник для высш.уч.зав./ Е. А. Пучин, В. С. Новиков, Н. А. Очковский и др.; под ред.Е. А. Пучина.-М.:КолосС,2007.-488с.

3.Картошкин, А. П.Смазочные материалы для автотракторной техники:

справочник/ А. П. Картошкин.-М.: Издательский центр «Академия», 2012.-240с.

4. Картошкин, А. П.Технологические жидкости для автотракторной техники: справочник/ А. П. Картошкин.-М.:Издательский центр «Академия», 2012.-240с.

5. Картошкин, А. П. Топливо для автотракторной техники: справочник / А. П. Картошкин.-Изд. 2-е стер.- М.: Издательский центр «Академия», 2013.-192с.

6.Кутьков, Г. М. Тракторы и автомобили. Теория и технологические свойства: учеб./ для высш. уч. зав. / Г. М. Кутьков.- М.:Колос,2004.-504 с.

7. Материаловедение. Технология конструкционных материалов[Текст]:учеб.для высш. уч. зав. Кн.2. /В.Ф.Карпенков, Л.Г.Баграмов, В.Н.Байкалова и др.М.:КолосС, 2006.-311с.

8. Надежность и ремонт машин [Текст] : учеб. для высш. уч. зав. / В. В.

Курчаткин, Н. Ф. Тельнов, К. А. Ачкасов и др.; Под ред.В.В.КурчаткинаМ.:Колос,2000.-776с.

9. Родичев, В. А. тракторы и автомобили: учебник/ В. А. Родичев, Г.

И.Родичева.-4-е изд., стер.-М.:Колос, 2000.-336 с.

10.Система питания автотракторов дизельных двигателей, используемых в АПК (устройство, работа и регулировки) [Текст]: учебное пособие / А.

К. Кобозев, В. Р. Марков, В. С. Койчев, И. И. Газизов /Ставропольский гос.агр.унив.-М.: Колос; Ставрополь:АГРУС, 2008.-220 с.

–  –  –

*) Норма не применяется при наливе и сливе самотёком;

**) Нормативное значение расхода топлива увеличивается на величину расхода топлива, установленного в литрах на моточас работы или в л/км пробега заводом-изготовителем дополнительного оборудования спецавтомобилей.

Таблица А.3 Нормы расхода топлива для специальных и специализированных автомобилей, выполняющих специальные работы в процессе передвижения Модель специального Базовая модель Норма на пробег Норма на работу оборудования или специализирован- автомобиля, ного автомобиля л/100км

–  –  –

Для автомобилей и их модификаций, на которые отсутствуют индивидуальные нормы расхода масел и смазок, установлены временные нормы расхода масел и смазок.

–  –  –

РЕМОНТНО-ТЕХНОЛОГИЧЕСКИЕ

МАТЕРИАЛЫ

Методические указания для выполнения практических работ для студентов по направлению подготовки 110800.62 Агроинженерия

–  –  –

Оригинал-макет подготовлен в Библиотечно-издательском центре СевКавГГТА 369000, г. Черкесск, ул. Ставропольская, 36

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ

ГУМАНИТАРНО-ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ

–  –  –



Pages:     | 1 |   ...   | 3 | 4 ||
Похожие работы:

«Стр. СОДЕРЖАНИЕ Общие положения 3 Нормативные документы для разработки ООП ВПО по 1.1 3 направлению подготовки (бакалавриата) 110800.6 Общая характеристика основной образовательной программы 1.2 4 высшего профессионального образования по направлению подготовки «Агроинженерия» 1.2.1 Цель (миссия) ООП ВПО 4 1.2.2 Срок освоения ООП ВПО 5 1.2.3 Трудоемкость ООП ВПО 5 Требования к уровню подготовки, необходимому для освоения 1.3 5 ООП ВПО Характеристика профессиональной деятельности 5 2. Область...»

«Кафедра энергообеспечения предприятий и электротехнологий Образовательная программа магистратуры «ЭЛЕКТРОТЕХНОЛОГИИ И ЭЛЕКТРООБОРУДОВАНИЕ В АПК» Направление подготовки – Агроинженерия Кафедра энергообеспечения предприятий и электротехнологий • Доктор технических наук, профессор, зав. кафедрой энергообеспечения предприятий и электротехнологий; руководитель ведущей научной • и научно-педагогической школы Санкт-Петербурга «Эффективное использование энергии, интенсификация электротехнологических...»

«Лист согласований Первый проректор по учебной работе и развитию С.Н. Широков _ Проректор по учебноорганизационной работе _ А.О. Туфанов Директор института В.А. Ружьёв _ Начальник учебнометодического отдела Н.Н. Андреева _ Директор Центра управления качеством образовательного А.В. Зыкин _ процесса СОДЕРЖАНИЕ 1 Общие положения 1.1 Основная образовательная программа бакалавриата, реализуемая вузом по направлению подготовки 110800.62 Агроинженерия и профилю подготовки Электрооборудование и...»

«СОДЕРЖАНИЕ Общие положения 1.1 Нормативные документы для разработки ООП ВО по направлению подготовки 35.04.06 Агроинженерия 3 1.2 Общая характеристика основной образовательной программы высшего образования по направлению подготовки 35.04.06 – Агроинженерия 1.3 Требования к уровню подготовки, необходимому для освоения ООП ВО 5 Характеристика профессиональной деятельности выпускника 2.1 Область профессиональной деятельности выпускника 2.2 Объекты профессиональной деятельности выпускника...»

«МЕТОДИЧЕСКИЕ И ИНЫЕ ДОКУМЕНТЫ, РАЗРАБОТАННЫЕ ОБРАЗОВАТЕЛЬНОЙ ОРГАНИЗАЦИЕЙ ДЛЯ ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА МАГИСТРОВ (СПИСОК) НАПРАВЛЕНИЕ «АГРОИНЖЕНЕРИЯ» ПРОФИЛЬ: «МАШИНЫ И ОБОРУДОВАНИЕ В АГРОБИЗНЕСЕ» Абидулин, А.Н. Разработка роторного отделителя ботвы моркови на 1. корню и обоснование его режимов работы: автореферат дис.. кандидата технических наук: 05.20.01 / Абидулин Алексей Назымович; Волгогр. гос. с.-х. акад. – Волгоград, 2010 – 19 с. Акопян, Р.С. Методическое пособие по...»

«ФГБОУ ВПО НОВОСИБИРСКИЙ ГОСУДАРСТ ВЕННЫЙ АГРАРНЫЙ УНИВЕРСИТЕТ ИНЖЕНЕРНЫЙ ИНСТ ИТУТ ПРОИЗВОДСТВЕННАЯ ПРАКТИКА Методические указания для эксплуатационной практики Новосибирск 2015 Кафедра эксплуатации машинно-тракторного парка УДК 631.171.3 (07) ББК 40.7, я7 В 927 Составители: Ю.Н. Блынский, докт. техн. наук, профессор А.А. Долгушин, канд. техн. наук, доцент В.С. Кемелев, канд. техн. наук, доцент А.В. Патрин, канд. техн. наук, доцент Рецензент: Щукин С.Г., канд. техн. наук, доц. Производственная...»

«Г.Г. Маслов А.П. Карабаницкий, Е.А. Кочкин ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ МТП Учебное пособие для студентов агроинженерных вузов Краснодар 200 УДК 631.3.004 (075.8.) ББК 40. К 2 Маслов Г.Г. Техническая эксплуатация МТП. (Учебное пособие) /Маслов Г.Г., Карабаницкий А.П., Кочкин Е.А./ Кубанский государственный аграрный университет, 2008. – с.142 Издано по решению методической комиссии факультета механизации сельского хозяйства КубГАУ протокол №_ от «_»_2008 г. В книге рассматриваются вопросы...»

«МЕТОДИЧЕСКИЕ И ИНЫЕ ДОКУМЕНТЫ, РАЗРАБОТАННЫЕ ОБРАЗОВАТЕЛЬНОЙ ОРГАНИЗАЦИЕЙ ДЛЯ ОБЕСПЕЧЕНИЯ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА МАГИСТРОВ (СПИСОК) НАПРАВЛЕНИЕ «АГРОИНЖЕНЕРИЯ» ПРОФИЛЬ: «МАШИНЫ И ОБОРУДОВАНИЕ В АГРОБИЗНЕСЕ» Абидулин, А.Н. Разработка роторного отделителя ботвы моркови на 1. корню и обоснование его режимов работы: автореферат дис.. кандидата технических наук: 05.20.01 / Абидулин Алексей Назымович; Волгогр. гос. с.-х. акад. – Волгоград, 2010 – 19 с. Акопян, Р.С. Методическое пособие по...»

«Стр. СОДЕРЖАНИЕ Общие положения Нормативные документы для разработки ООП ВПО по направлению подготовки (бакалавриата) 110800.62 «Агроинженерия» Общая характеристика основной образовательной программы высшего 1.2 профессионального образования по направлению подготовки 110800.62 «Агроинженерия» Требования к уровню подготовки, необходимому для освоения ООП ВПО 1.3 4 Характеристика профессиональной деятельности 5 2. Область профессиональной деятельности выпускника 2.1 5 Объекты профессиональной...»

«НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АГАРНЫЙ УНИВЕРСИТЕТ Инженерный институт ПРОЕКТИРОВАНИЕ РЕСУРСОСБЕРЕГАЮЩИХ ПРОЦЕССОВ В РАСТЕНИЕВОДСТВЕ Методические рекомендации по выполнению контрольной работы Новосибирск 2015 Кафедра эксплуатации машинно-тракторного парка УДК 633.1:631.55 Составитель: д.т.н., проф. Ю.Н. Блынский, ст. преподаватель Н.Н. Григорев Рецензент: канд. техн. наук, доц. С.Г. Щукин Проектирование ресурсосберегающих процессов в растениеводстве: метод. рекомендации по выполнению контр....»





Загрузка...




 
2016 www.metodichka.x-pdf.ru - «Бесплатная электронная библиотека - Методички, методические указания, пособия»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.